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The evaporation time of dense, cylindrical clusters of drops in vortical flows
is mainly controlled by the initial solid body rotation of the drops. The
evaporation time is a strong decreasing function of the air/fuel mass ratio in
the dense cluster regime and asymptotically levels off in the dilute cluster
regime. As the drops evaporate they move out radially forming a cylindrical
shell around the center of the vortex. Both the final to initial volume ratio
and the final to initial shell thickness ratio are decreasing functions of the
initial air/fuel mass ratio.

It is shown that whereas the evaporation time does not correlate with the
initial Stokes number in the dense cluster regime, both the volume ratio and the
shell thickness ratio correlate very well with the initial Stokes number. In
the small Stokes number regime, the correlation is insensitive to the initial
air/fuel mass ratio.

Additionally, it is found that the evaporation time of both dense spherical
clusters of drops in axial flows, and dense cylindrical clusters of drops in
vortical flows can be substantially decreased by reducing the size of the
cluster. In both cases, substantial fuel vapor loss was seen to occur through
the boundary(ies) of the cluster. The ratio of the mass of fuel vapor lest from
the cluster by the initial mass of the fuel increases substantially with
decreasing cluster size.
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B. IHT OOUCTZO

This report describes research performed during FY'87-FY'Sg at the Jet
Propulsion Laboratory on the Modeling of Drop Containing Turbulent Eddies.

C. OFJECTIVES

The objectiveof this effortwas to developa model of the behaviorof a single
drop-containl_gturbulenteddy.

D. APPROACH

The approachwas characterizedby a step-wiseprogressiontowardsour objective
in order to insurethat the simplestmodel capturingthe crucialaspectsof the
drop-eddyinteractionwas developed. In this mannerenough realismis embedded
into the model to qualitativelydescribe the physical picture, while the
simplicitymakes this model a good candidatefor furtherdevelopmentin order to
developquantitativecapabilities.

E. RESULTS

Initially,the idea was to use contourdynamicsmethodsto describethe vortex
motion and to couple to this the particlebehavior. For this reason,Caltech
was issued a subcontractto look into transportand mixing in vorticalflows.
Two publications (see Appendix I and Appendix 2) and three conference
presentations,includingan invitedpresentation,were the resultsof this work
[see items VII (4) and VII (5) in the Summary].

However,it turns out that preliminarywork (seeAppendix3) focussingon heat
and mass transferacross the surfaceof a clusterembeddedin a turbulentflow
showed that insteadof the cluster volume evolvingat a rate consistentwith
evaporation such that all new vapor stays inside the cluster, there is
substantialmass transferacross the clustersurface. The situationwhere th_
cluster volume evolution is such that all evaporatedmass stays within the
clusteris amenableto a contourdynamicsdescriptionbecausethe contourlines
are streamlines,however if mass crossesthe clusterboundarythis description
is no longer valid. This preliminarymodel showed that transportacross the
cluster boundary is important and that other alternativesto the contour
dynamicsmethodsmust be found.

Additionally,this model showedthat, in absenceof vorticalmotion inside
the cluster, a cluster of evaporatingdrops always contractsinitiallydue to
heat transferfrom the gas phase to the liquid phase. For dilute clustersof
drops, there is little contractionbecausethere is not much liquidmass, and
after this initialcontractionthe clustervolumestays basicallyconstant. In
contrast,for dense clustersof drops there is strongcontractionand a recovery
ensues. This recovery is due to transport of surroundinghot gas to the
cluster,across its boundary. The amount of recoveryincreasesas turbulence
levels in the surroundinggas increaseand also as the initialradius of the
cluster decreases. It was also shown that the evaporationtime is a strong
functionof both turbulencelevels and initialrelativevelocitybetweendrops
and gas in the dense cluster, regime,whereas the evaporationtime is not a
functionof eitherturbulenceor relativevelocityin the diluteclusterregime.

3
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Just as important,it was found that the evaporationtime is a strongdecreasing
function of the initial cluster radius in the dense cluster regime and
independentof the initial cluster radius in the dilute regime. Thus,
turbulenceis seen to be importantin two ways: First it can break the spray
into clusters and the smaller is the cluster_the shorter is the evaporation
time Second it brings hot, unvitiated(by fuel) vapor from the surroundings,
thereby promoting evaporation. The present results show that evaporation
controlshouldbe envisagednear the atomizer,where the spray is dense,because
it is preciselyin this regimethat turbulencehas the greatesteffect.

Based upon the above results it was decided that since transport processes
_crossthe clusterboundarywere so important,the model describingthe radial
motion of the drops, and thus the clusterboundarymotion,must be improved.
With this new, improvedmodel camparisenswere made (see Appendix4) between
Four models based upon combinations of two different turbulence models
(transportto the cluster) and two different models of drop radial motion
(transportfrom the cluster). The results (see Appendix 4) showe_ that the
evaporationtime is insensitiveto the models in the diluteclusterregime;that
all models have same qualitativebehaviorin the dense clusterregime;and that
the quantitativepredictionsare differentfor the four models in the dense
clusterregime.

All models show that the evaporationtime is an increasingfunctionof the
initialcluster radius, with a strong dependence in the small cluster radius
regime,howeverquantitativelythe evaporationtime is a functionof the model.
It was also foundthat the ratio of fuelmass lostto tne initialfuel mass is a
decreasingfunctionof clusterradius becausefor smallerclustersthe surface
to volume ratio is larger thus enhancing evaporation. These results were
qualitativelythe same, independentof the turbulencelevels, however, for
larger turbulencelevels the ratio was larger. In contrast,the ratio of the
totalmass lost frosnthe clusterto the initialmass was shownto be insensitive
to the initialcluster radius,except for very small clusters. These results
show that in order to evaluateand improvemodels,experimentalistsmust make
measurementsin the dense cluster regime and for small clusters,where the
sensitivityJf the resultsis highest.

All the above resultswere obtainedfor clustersof drops moving axiallyin a
flow. Thus both drops and gas in the clusterhad an axial and a radialvelocity
component,the radialcomponentaccountingfor clusterexpansionor contraction.
The pertinentpoints of ,thestudies of drops in such sphericalclusters are
describedin Appendix5.

In order to describe _ne behaviorof collectionsof drops in large, coherent
vorticessuch as.ha_ebeen observedin the shear layer betweenthe spray and the
surrounding gas(l,Z), another configuration was studied. In this new
configuration,a single longitudinallyinfinitevortexwith an infinitelythin

_ viscous core contains a cluster of drops. Uniformity is assumed in the
longitudinaldirectionand thus the model is formulatedfor a sectionacrossthe
longitudalaxis. The clusterof drops has also a cylindricalgeometrywith an
inner radius and an outer radius both locatedwithin the free part of the
vortex. Thus the drops form a cylindricalshell inside the vortex with the
inner surfaceof the shell being initiallylocatedeitherat a finite location
or infinitesimallyclose to the vortex center. In this new configurationboth

4
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drops _nd gas have radial and azimuthalvelocitieswhich are functionsof time
and the radial coordinatefrom the vortex center. The drag force incorporates
blowing effects from the drop surface as the drop evaporates. The model is

' describedin detail in Appendix6. Resultsobtainedwith Olis model show that
the evaporationtime is a strongfunctionof the initialsolid body rotationof
drops and a weaker functionof the initialsolid body rotationof the gas in the
dense cluster regime. Irlthe dilute clusterregimethe reverse is true. The
initial irrotationaldrop motion and initialgas solid body rotation affect
evaporationin both dense and dilute regimes. It is also found that the ratio
of the final (when the drop residualradius is 5%) to initialvolumeratio is a
decreasing function of the initial air/fuel mass ratio bet.use for denser
clustersthe centrifugalforce is higherdue to the largeramo,ltof mass in the
cluster. The volume ratio was shown to be highestfor lar,est initialsolid
body rotationof the drops. The ratio of the final to initi I shell thickness
of the cluster was also shown to be a decreasing functi(,nof the initial
air/fuelmass ratio. This was explainedLy the fact that rotational motion
tends to pack the cluster,where_csolidbody rotationtends to pull the cluster
apart. Since the initialirrotationalgas motionwas taken higher than that of
the drops, as the drops move out radiallythey lose solid body rotationand
acquire irrotationalmotion. Since the same momentum is transferredto more
mass as the air/fuelmass ratio decreases,the irrotationaldrop motion will
increase less. Thus solid body rotation will be more importantyielding a
thickershell.

One of the most importantresults of this study was the finding that
althoughthe evaporationtimedoes not correlatewith the initialStokesnumber,
in the dense clusterregimeboth the volume ratio and the shell thicknessratio
do correlatewith the initialStokesnumber. The reasonsfor this are explained
in detail in Appendix 6, and thus will not be repeatedhere. The important
conclusionis that this correlationprovides a way of qualitativelychecking
this theorywithoutnecessarilyneedinga precisemeasurementof the drop number
density providingthat one makes the measurementsin the dense cluster regime
and that one can distinguish between two clusters which one is denser.

Parametric variations w:th the initial cluster radius show that the
evaporationtime can be substantiallyreducedby decreasingthe initialcluster
radiusin the small cluster-r_diusregime. Detailson the parametricvariation
are given in Appendix6.

REFERENCES

I. Lazaro, B. J and Lasheras,J. C., "Droplet Dispersion and Transport
Mechanism in a Turbulent, Free Shear-Layer", 22nd Svmp. (Int.) on
Combustion,pp 199!-1198,1988

2. Lazaro, B. J., and Lashers,J. C., "ParticleDispersionin a Turbulent,
Plane,Free Shear Layer",Phys. FluidsA, I, 6, pp 1035-1044,1989.
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AN ANALYTICAL STUDY OF TRANSPORT, MIXING AND CHAOS

IN AN UNSTEADY VORTICAL FLOW

By V. ROM-KEDAR*,
Apl_lie,¢2Mathematics

A. LEONARD
GraduateAeron_uricaJLaboratories

andS.WIGGINS
AppUedMechanics

Cafiformains_tuteofTechnology,PasadenaCA 91125

We examine the transportpropertiesof a pemcular two dimensional, inviscid incompressibleflow using dynamicaJ

systems techmques. The velocity field is time periodicandconsists of the field inducedby a vortexpair plus an

oscillatingstrain-ratefield. In the absence of the swain-treefield the vortex pairmoves witha constantvelocity

and carries with it a constantbody of fluid. When the swain-ratefield Lsadded the picturechanges clntmauca_ly:

fluid is enurainedand detrained frc_ the neighborhoodof the vorticesandchaoticparticlemotionoccurs.We

znvesUgatethe mectuLqLsmfor thisphenomenaandstudythemmsponandnuxmgof fluidm thisflow. Ourwork

conslstsofbothnumericalandanaiyUcalstudies. The antlyocalstudiesincludetheinterpretationofthemvanant

manRoldsastheund_lymgslructmlwhi.ch.govorntheu-ansport.Forsmallvaluesofm'ain.rateamplitudewe use

Melmkov'stechniqueto investiptethebehaviorof dtemanifoldst, theparametersof theproblemchangeandto

prove the existence of a hmseshoe map _d th_ the existence of chaotic pamcle paths in the flow. Using the

Metmkov_tuuque oncemorewe developananalyticales_mateof the flux rateintoandoutof me vortexnetgh-

borhood. We then develop a _c,hnklUefor demnn_tingthe residence _me dismbutionfor fluid parm:lesnear the

vortices that is vafid for arbilrll7 smtin-nt_etmpllcudes. The technique involves an understanding of the

geometryof _e umgUn$ofthestableandvmlablenumtfoldsandresultsinidramaticreductionincomputational

effort requiredfor thedetez'minauonof the residencet_ae dismbutions.Additionally,we invesuptebe total

stretchof materialelements while theyate m the vicinity of the vortex pair,u,sin| this quanutyas t measureof the

effectofthehorseshoeson urajectoriesl_kSin| throughthisrei_on.The numericalworkverifiestheanaiyucal

predictionsregardingthe sm_ctureof the invltrialltmanifolds, the mechanLs_nfor enulinment anddeirainment,and
the fl_ rate.

"Presentaddress:The JamesFranckInstitute,TheUniversityofChicago,Chicago11.60637
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1. IatroductJon

Lnmost fluid flows of i_r_t_st,transportaridmixing an: dominatedby convective processes so that

the relative motions of fluidpa_ are all impotent. U_ortunawdyparticlemorion is generallymore

complex than the underlyingflmd dynamics.For example,while the motion of threepoint voices in art
unboundeddomainisinr_grable,particlemotioninthisflowcanbechaotic(Amf[1983])andcer,.ain

simplesteady,spatiallyperiocficsolutionstoth;Eulerequationsinthreedimensions,knownasABC

(Arnold,BeltzamiandChfidress)flowsyieldchaoticparticlemotion(Dombreetal.[1986]).

Of course, if the fluid dynamics is sufficiemly simple then particle mo__onsare integrable and a

directanalytic,dattackontheproblemmay o_fruitfulAn exampleinthisclassist_ analysisofa

cLilTdsionfl---,nebyMarble[1985],involvingtheroilingupof_,..aJtL'_yplaneintarfaceintheflowofa

viscousfinevortexintwodimensions.Attheo,_erendofthescale,whentheflowisturbuJent,direct

numericalintegrationoftheNavier.Stokesequ=rionsplusconvectiveequationsforpassivescalars(Kerr

I1985], Pope [1987]) is a computationalapproachto mixing problems, whereasa d3eoret_calapproach

might consist of consu'uc1_ngreasonable physical models for mixing processes (BmadweU [1987],

Dimotakis[1987],Kersteia_ _ [1984]).Inthispaperwe consideranintermediatec_.se,onein

which the flow is rp'ttively simple but the pamcle motion is ctusmic.We show that t_ recent _pid

developmentintheflgory ofnonlineardymm_c_ systemsandchaoticphenomenagives muchhopefor

aratherex_nsiveanalysisofp_dclemoron insuchflows,Indeed,_ dynamicalsynemsapproachto

study of fluid flows is very similar in spirit to _._ flow visualization tec2_que,s utilized in the

experimentalstudyofcol_enmtslau.'_n_inr_ se_Lsethatdynamical systemsWry isconcernedwith

theglobaltopologyoftheflowfroma Lagr_gi_apointofview.Sincetogoodappmx,imauon

temperamzeandmatsmove withthefluidvelocity,und__l the sm_u_ governingp_,_cles

motioninfluidflowsisru_esuryforLm_,q_om of flowvisu_liz,_om(thevisu_zanonofmotion

ofmassparticles)andpredictionsof massandbe,*tran.sf_intechnologic_applica_om.

The applicationof dynam_ca;sym theorytot_ study of the global topologyof fluidpardcle

motionsisnotnew.The timworkappearstoberJ_ofH_u_n[1966]who.actingona suggestionof

A.mold[1965],num,_Lly studiedthefluidpaniclemotionsinABC flow.Heflonshowed_hatthe

flowcontainedKAM toriaswellasctumticmotionsoftheSmalehorseshoetype.Thisflowhas

recentlybeenthesubjectofmoteextensivestudybyDoml_ et_I.[1986].Ch_ticpm_clemotiomin

the,&BC flowsalsohavetelevisetotheIdmn_ticdynamoproblem,seeArnoldmd Korkine[1983],

G_owty and Frisch[1986],and Moff_zmd Pmaor [1985].haef[1984]made thellntexplicit

connectionbetweenpaniclemotionsintwo-dimemionalincompn_sibleflowand two-d_mensionaJ

Hamiltonitndynamicalsystems.

Sincethestudyoffluidparticlemotionsinvolvesonlykinematicalconsider_ons,cl_applicauon.

and hence, n_sult,sof dynamical systems theory an_ independentof Reynolds number. For example,

Atef and B_tcImrdar [1986] showed _ unsteady stokes flow betwe_ eccentric rotatingcylinders, in

wl_chtherotationrateismodulatedperiodicallyintime,canexhibitchaoticpamclemotionsofthe

1990015254-011
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Smal_ horseshoe tYPe. Thus this particular stokes flow is effectively nonreversible, This same flow has

also been studied experimentally as well as theoretically by Chaikea et al. [1986], [1987]. Ot_.,noand

owo,_rs (see Osiers et al. [1986], _.akar et al. [1986], and Ottino et al. [1988]) studied chaooc fluid

parude mouons in a variety of flows, both at s'_all and large Reynolds numbers with particular

emphasison usingdynamicalsysmms techni_tesas a theoretical basis forthediscussionof mixing

processes.Bmomhead and Ryrie[1988]studyfluidparticlemotionsin thevelocityficldof Taylor

vorticescloseto theonsetof thewavy insxabiliryand demonstramthechaotictransferenceof fluid

betweenneighboringvortices.Femgold et al. [1998]studymodels forparticlemouon m three

dimensionaltimedependentflows.Addinonalreferencesapplyingdyna.'nicalsystemstechniquesto_c

studyoffluidparticlec-ajectonesam Sumsh [1985]andAfter[1983],

In thispaperwe studyfluidvarticlemotionsinthevelocityfieldinducedby two counter-rotanng

pointvorticesofequalstrengthsubjectto a timeperiodicsu'ainfield.Thisisa fundamentaltypeof

flowwhichisr_levantm a widevarietyofapplicationsas,forexample,inthestudyofoscillatoryflows

inwavy walledtubes (seeRalph [1986],Sobey [1985],and Appendix !),in th_studyof _a:ling

vomces, and in the study of pe_d vortex rings (Shartff [1989]).

The main difference in out analysis of the topology of a fluid flow via dynamical systems

techniques as opposed to previous analyses is that rather than just using the framewo'_ of dynamical

systems theory to give a description of the topology and indicau: the presence of chaotic fluid rarocle

u'ajecwnes we use the framework in order to calculate vhysically measurable quantities such as fluxes

and die aismbution of volumes via residence times. We do this by fir_ identifying the strucrdres in the

flow responsible for these physical proce&s_ and then by using the dynamics of these sffuctutes to

predict these physical qu_,,dties. Thus in some sense we realize the goldof the study ofcoherent

smlcnu_ for out problem. Additionally, in this paper we inn'oduc¢ two new concepts that play an

important role in the study of mixing and transport processes due to chaotic fl_d pa_cle mooons.

They ate:

1. Tangle Dynanuc$. In secUnn 3 we review how the study of par_cle motions in two.

dimensional incompressible time.periodic fluid flows can be reduced to the study of a two-

dim_.sional map. It is weU known in the dynamical systems literature that such maps may

possess resonance bandt consisang of altemaung hyperbolic and elliptic periodic points.

This has quid dynamical significance in the sense tr.,_ the stable and unstable manifolds of

the hyperboEc pomu create partial barriers to tr.,,xspon in the flow. Additionally, these

stable and unstable manifolds may intersect many ames resulting in a complicated

geomemcal su'ucn_ that dram_cally influences the stretd_m8 and deformation of fluid

elemenm. We develop analytical and computational techraques which we refer to as tangle

dynanuc$ that allow us to compute the rateof transpor_ 'of fluid betweer,regions separated by

these partial barriers. From _s informanon we c_'n compute ._si,_encetime dismbuuons

and, more generally, determine the effect of a msor_enceband on a fluid elemem. We
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develop these ideas in the context of the specific flow considered in this paper, however

recently the methods t,,avebeen generalized to apply to any two-dimensional time.periodic

fluid flow, see Rom-Kedarand Wiggins [1989].

2. Finite Time Stretch. ottmo [1988] has shown tl_ relationship between the notion of a

Liapunov exponem from dynamical systems theors/ and the su_tching of fluid elements.

However, the Liapunov exponent i._a quamity computed for a single fluid particle :rajectory

which is time ave.aged in an asymp_tic sense. Thus there is a practical limitation of this

quantity in that, for many open flow_, most fluid particles spend only a ftmte;tin_.ein the

, chaotic zone rendering the classical thr.ory of Liapunov exponents inappropriate. This _sso

because the asymptotic time average for such trajectories would give a zero exponent.

However, using tangle dynamics _ proof of the existence of chaotic parr.lclemotions, we

are able to determine which particlesst;_'_Idexperience exponential sn'etc,ttmg and the fimte

v.me interval over which most of ttUs s_tc.hLng will take place. _;e then quantify the

stretching by consideringthe total su_tc.hsuffered during this finite p('..ric_Jf time.

This paper is orgmized as follows: In section 2 we derive the velocity field for the osciilanng

vortex pairand in section 3 we begin our analysis of the velocity field by mmxiucing the Poir_ate"map.

In _ction 4 we discuss three qualitatively distinct regions which arise in our flow: tt_efree (low region,

the core, and the mixing region. We discuss tangle dynamics and the associated mechanism for mass

tratspon in the flow in section 5 and we consider mass _r_ in detail and give precise de_nitions to

the conceptsofentrainmentandden'ainmentintermsoftangle dynz,micsinsection6.alongwiththe

resultsofnumericalcomputa_ons.Inscion 7 we discusstheconce._¢ofchaosandshowhow itarises

m our flow, and in section 8 we discuss mixing and the total _etch of fluid elements as they pass

throughregionscontaininglocalizedchaos.Summaryandconc,usionsaxegiven in section9.

2. Oscillating Vortex Pair .

We examine tl_ flo_vgovernedby a vortexpair in the presenceof an oscillaling externO,sv-&in-rate

field.The vorticeshavecirculatJom+ r'andam separatedbyanominaldistance2din=hey-direction.

Thestreamfunctionfortheflowinaframemovingwiththeavengevelocityofthevorticesis

r [(x _x_)2 �ì�_y,)2"-V,y +e.xysin(for) (2.1)'_=-_-log (x-x,)2+Lv+y,)2

where(x,(t),± y,(t))atethevortexpositions,eisthestrainrateandV,istheaveragevelocityofthe
I"

vortexpair.ffe= 0 then(x,,y,)= (0,d)aadV,= -_. Theequationsofparticlemotionate

i
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We show, as an example, in Appendix I that this flow approximates the flow induced by a vot_x pair

in a wavy-waLl channel. We obtain dimensionless variables as follows:

Ft e 2,-_V, r" 27t_F

x,,d --* x. y/d _ y, 2xd2 oJ F 27tra_2

Then (2. I) and (2.2) become

d.x J (Y -Y,) Y+Y* ] _x

=-, , - J -_,, + -- sin(t/y) _'__-at i (x - x,)"+ (y_ y,)Z (x- m ):+ (y+y,)2 ,f ....

dt (x -x_)2 �(y-y,):- (x - x,)2 + (y +y,)2'.j _- sin(t/y) (2.3b)k.

using the fact that a point vortex is convected with the flow but does not induce self veloctty we obtain

the following equations for the vortex position locations:

dr, 1 e._
m

= 2y,, _" + _y sin(t/y) (2.4a)

_Yv _.v
= _ m sin(t/'D t2.4b_

dt y

The resulting motion of ttm vortice, is relatively simple. Equation (2.4) with the mitial con_uo,,_

x_ (0) = O, Yv(0) = 1, a_ easily integrated to give

,j:t F e_(_(')-t)]x.,(t) = if-2e-'(c_('o't) L1- 2u. dr (2.5a)0

y,(t)= et(m'°er)'t) (2.5b)

The requirementthatthe mean velocityof the vortexpairbe zeroin the moving frame _elds

et

u, = 2/o(e)whereIo isthemodifiedBesselfunctionof ortlerzeta.From (2.5)itisclearthatthe

vorticesoscillatem orbitsrmarthepoints(0.+ I).Thus we termtheresultingflowgivenby (2.3)the

OscillatingVortexPair(OVP) flow.

Equ_om (2.3)togetherwith (2.5)givetl_equationsof particlemotionas a functionof two

dimensionlessparametersy andg,pmpomonal tovormx strengthandstrainrate.resp,'ctively.Formost

ofme analysisthatfollowse cantakeon arbin'aryvalues.Howeverfortheperturbationcalculauonswe

shallassumethat_ issmallandwillrequireanexpansionoftherighthandsideof(2.3)inpowersofe.

Thisexpansionyieldsequationsof motionforfluidparticleswhich artof theform ofa periodically
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_rt_ooedi_gr_le Hamflwmansystem:

d.x
"_- =f t(x, y) + egl(x, y, t/_, y) + 0(_:) (2.6a)

dy =f2(x. y)+ £g2(x. y, t/y,,7)+ O(_) (2.6b)dz

i2_ef_'lctiom f,, gi am given in Appendix 2.

For e = 0 the phase ponr'_it of the mtegrable Hamilwman system, or equivalently the streamlines of

the flow induced by a vortex pair in the frame moving with the vomces, appears in figm¢ 2.1. Note

that for this case, there _ two hyperbolic stagna_on points p_, p. connected by el"geelimiting

streamlines _F,,_Foand_Fl defined by _F(;,,y)[_=0, ]x[ S_. with y >0, y =0, and y <0

res'pectively. Thus a fixed, closed volume of fluid or "bubble" is bounded by the limiting streamlines

and moves with the vortex pair for all times. As we shall see below, this picture changes dramatically

when ¢- 0. Note also that for any e, the flow is symmetric about the x axis and thus we need only

studytheflowintheupperhalfplane.Suchsymmetrywouldbepresentinaxisymmeu-icflows.Ifthe

scr'am-r'4tefield is not alignedwith the x -y axesthe straightfine cormectingthe two vorticesalso

rotatesperiodically,but the qualitativebehaviorof the particlemotionis _.hes,:measthatdiscussedin
thefollowing.

Figure2.1S_mlmes oftheUnpermfoedFlow.

3.Analysis:The PoincareMap

We ateinterestedinthe_ oftheflowgeneratedby thevdocity field(2.3)andhow the

structurev_es as the parametersy andt ate varied. A brute force methodfor achievingthis goal

wouldbe to numericallyin=gnu=(2.3) for a largenumberof initial condJtiomfor the rangeof y and

values of interest. Although this would be an efficient meat= for generatinga large list of numbers, it is

notatallcle,arhow onewouldexn'actinformationconcerningthestrucnueottheflowfromthislist of

numbers. One mighttryplatingthetrajectoriesof a l_ge numberof fluidpartictesinspace,however,

becausethe velocityfield isunsw_y, theae w@ectoria may intersect themselves as well asothers many

nrn_ leading to a complicated topological=rucl_tewhichmight obscure relatively simple structures

whose dynamics essentially governthe flow. In orderto beaer understandthe dynamics of the unsteady

flow generatedby (2.3) we will study the associatedPoint:are'map.

Roughly speaking, the Poincanf map of the flow is constructed by associating to a fluid panicle at a

fixed phase of the external strain-rat= field its location underevolution by the flow after one period of

the s'tnm.nte field. More mathemmcally, we rewrite the unsteadytwo dimensional velocity field (2.3)

as t. steady three dimensional velocity field by inunducingme phase of the strain-rate field as a new

depenaem variable. We do this by defining the function
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e(t) =, t/'_ rood 2_

in which case (2.3) and (2.5) can be written as:

a'P
x = _ (x .y ,O:e,8)

a_P
y = - _ (x,y,e;_,8) (3.1)

e -- 1/y.

and for small ¢ (2.6) becomes:

x = f i (x ,y ) + eg i (x, y ,e; 7) + o(._)

=fz(x,y) + cg2(x, y, 0; 7) + o(_) (3.2)

A two dimensional cross-section of the three dimermonal pha_ space of (3.1) or (3.2) is given by:

_ = 1 (x, y. 0) I 0 = _ • (0,2=

andthePomcar_mapof _ into _i is definedas:

(x(O),y(8))_-_(x(8+ 2x),y(8+ 2_)).

So studyingtheflowviathePokncan_map isequivalenttosamplingfluidpar_cletrajectoriesattime

intervalsequaltotheperiodofthestrain-ratefield.

Themain_4vantageobtainedfromusingthePoincar_map tostudyuns_ady,ume-periodicvelocity

fieldsisthatthetechniquetendstofilmroutr_lundantdynamicalphenomenaandrevealtheunderlying

strucnu_whichgovernvariouspmperaesoftheflowsuchasmixingandtransport.Forexample,a

periodicpardcletrajectoryintheflowwhichmay havea verycomplicatedtopologicalstructureis

manifestedasa finite,discretesetofpointsforthePoincarefmap. Many moreexampleswillfollow

throughouttherestofthepaper.Also,inAppendix5 we collectseveralusefulpropertiesofPoincare

maps.

1990015254-016



13

Out goal is to study pmpe_es of the orbit structure of the Poinc.a_ map in _rder to discover the

su'uctures necessary to predict mixing and transport properties of the flow.

4. Three QualitaL" "ely Distinct Flow Regions

Lel: us re_ the structtu-e of the unpertm_d velocity field now in the context of the Poincarefmap.

In this case the velocity field is steady and fluid particles follow the meamlines defined by the level

curves of the slxeam function. Thus orbits of the Poinca_ map are sequences of discrete points lying on

the sue_unlines. The streamlines are examples of mva_ant curves or man,folds of the Poincar_ map

meaning that particles which start on such a curve must tJ'erezJ_er remain on that cur,,e under all

itermons of the Poinca_ map. The stagnation points p_ and p �amfixed points of the Poincar_ map.

Orbits of acid particles on W., and _t approach p �asymptoticallyin positive time and p_

asymptoric.aUy in negative time. In the terminology of dyv.amical systems _eory, _. and _t are

referred to as the stable manifold of p., denoted W_, and Wo plus ( --_,/7.) is tkle trustablemanifold of

p,.. denoted W.". Similarly, _. and Wt a_ referred to as the v..Jst_ble manifold ofp. denoted W'_, and

W0 plus ( p_, *- ) is the stable manifold of/7.., denoted W:.. Orbits of fluid particles st.artL_ on W.,

_o. and _l an_ referred to as heteroclinic orbits and _P. L3VtoL.){p_}q3{p_} and

_Pt L3 _Po1,3(P.} t,.) (P-} are said to form heteroclinic cycles. For brevity we shall simply refer to the

closed curve _P, t,.) _Pt L3 (P �•�L3{P-} as the lim#ing streo_wnlines.

Notice that fluid particle motions oumde the region bounded by the Limiting slreamlines are

qualitatively .:Lifferemthan those inside this region. We now want to discuss more fully the different

possible fluid par_cle motions and how they an_constrained by slructtu_ in the flow.

The Free Flow Region. Under the influence of the unperv.trbedvelocity field fluid particles outside the

region bounded by the limiting stre_tmlines move from right to leR along the unbounded streamlines.

We refer to this as the free flow regW_ Under the influence of the externally strained velocity field

fluid particles which axe sufficiently far from the limiting s_eamlines behave in the same manner as

those in the unperlttrbed velocity field. Particles move from nght to lef_ as before now with vertical

oscillations but their trajectories never encircle a vortex.

The Core. We refer t,'J the region of fluid which is permanently trapped and hence moves with the

vortex pw for all _e as the core. For the unpe_ flow the core is the fluid within the Umiung

sffeanllin_ and it corl_ias two separate ceils with boundaries C. = _. _l _0 L.) (P �˜�L.J(P-} arid

Ct = _P_q3 ':'o L) {P �œ�_,.)(PJ" Fluid particles in the interior of C. tnd C_ move in closed paths

along the streamlines of the unw.rtm'bed velocity field. We can uniquely label each closed streamline in

C. and Ct by the area which it encloses. We label this anna by I (note: in the context of Hamiltonian

mechanics I is called the action, see Arnold [1978]). Associated ".vitheach closed streamline is a period
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I

TiT)whichisthetimeneededfora particlestartingon thestreamlinetomake one coml_letecircuit

along the st_amlitm. The period goes to zero as ',he point vortices are approached and to _ as C_ and

Ct are approached.

We now interpret this extremely simple mouon of fluid par_cies in the unperturbed case reside C.

andCt intermsoforbitsofthePoincarefmap. Tim streamlinesind'tiscaseareexamplesof:nvcgqant

curvesofthePoincammap. That_s,orbitsoffluidparticleswhichstarton thestreamlinesmustalways

T([)

stay on the su'_amJJnes. Them are two types of orbits depending on whether or not the number _ is
T(I)

ranonal or irrational (note: in the context :)f dynamical systems theory the number _ is referred to

as a rotanon number ). These two types of orbits behave very differently under the influence of the time

penodic strain-rate field.

T(1)/2_'y=p/q: p, q, integers. In tl't_scase, every fluid particle on the invariant circle in the Pomcar_

map in the unperturbed case. reumas to its original position after q cycles ef the Poincar_ map.

However, in the precess it makes p complete revolutions around the invariant circle. Thus all fluid

parucleson theinvariantcircle move periodically with periodq.

In general, this situation can be expected to change dramatically under the influence of the tame

periodicsu'ain-ratefield.The invariantcircleisdestroyedanda finiteevennumberofperiodicorbitsof

altemamagstabilitytypewillbe preservedintheexternallystrainedcase.Halfoftheperiodicorbits

willbe stableandhalfwillbe unstableofsaddletype.The stableandunstablemanifoldsofthesaddle

typemotionsmay intersecttransversely,yieldingchaoacfluidparticlemotions.The resultingstructure

isknown asa p/qresonancebandorstochasticlayer,seeArnoldandAvez [1968]formore details.

T(l)/2rry=co: {oirraaonal. In the un_rturbed velocity field every fluid particle starting on an

invzriant circle of the Poincar_ map rotates around the circle, never remmmg to its initial position.

Two possibilities for the behavior of these orbits under external strain are as follows:

KAM torz. If co is sufficiently poorly approximated by rational numbers, i.e. it satisfiesa diophantine

condition (see Arnold and Avez [1968] or Moser [1973]), then, for sufficiently small amplitude strmn-

rates e, the invariant circle is preserved in the perturbed Poinca_" map. This invanant circle is referred

to as a/(.,4.34 torus after Kolmogoruv, Arnold, and Moser who _ proved the result (known as the

KAM theorem). KAM tori are extremely important since they represent total barriers to fluid motion

andhencestrongly influencetransport.

Cantorz. If co fails to satisfy the number theoretic hypotheses of the KAM theorem th,'n the work of

Pemval [1980], Aubry and LcDaeron [1983], and Mather [1984] implies that the invanant circle may

break down under the time periodic strain-rate field into an invanant cantor se;. or cantorus. The

dynamics on the cantorus are similar to the dynamics on the KAM toms. However, the cantorus
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containsgapswhichpermitthe(possiblyveryslow)passageoffluid.

We referthe.readertofigure4.1foranillustrationofresonancebands,KAM tori,andcantoriin:_._

core.Ourprimaryconcerniswithparticlemotioninthemixingregiondefinedbelow.Thuswe only

remark that these three su'ucmms govern the fluidu'mspor__fltin the com. In the parameter r"_ge we

are studying there exists the largest KAM tov.m which serves as a complete ban'ier to the flow, and

therefore will prevent the mixing of outer fluid with the fluid in the core. An interesting quesuon is
whethertlmcoreregioniscomposedofa singleregiotaboundedbya KAM torusorifthereareislands

outsidethelargestKAM ,.orusinwhichthemotionisbounded.Duringthenttrncricalexperiments,

describedm Section6,we observedthatfor7= 0.5themisonlyoneobservabl,ecoreregionwhilefor

y = 1.38 there are at least _,o (see figure 6.10).

Figure4.I.ResonanceBandsandKA.MTori.

The Mi,:angRegion. We now want to focus our attention on p. and p_ ind r2_¢irstable and unstable

manifolds. In the tmpen'urbex.Iflow W*,.and W'.. coincide along the s'u'eamlinea_"F,.and '{'It to create a

boundaryseparatingthecorefromtlmfreeflowregion.Withtlmadditionofexternalstrainwe can

makethefollowingassertions:

I. Forsufficientlysmallamplitudestrainfields(i.e.fore sufficientlysmall)p. andp_ persistas

fixedpoinLsofthePoincm_fmap. We shalldenotethembyp.,¢andP-,E,respectively.

2. The stable aridunstablemanifoldsof p �andp_ persistto become the stable andunstable

manifoldsofp.,._andP-.t.We dehornthembyW_,t,W_,t,W*_.t,andW_'t,respectively.
r,

ThesetworesultsfollowfromgetmntItheoremsr_gardingthepersis'mnc_ofinvariantmanifoldswhich

canbefoundinFenichel[1971]orIftmch,/)ugh,andShub[1977]andtheyam inde_ndentofthe

specificanalyticalformofthetim_periodicmain-ramfield(nora:thesere.s_tswouldal_ applyto

quasiperiodicstrainrates,S_ Wig_sas[1987],[1988]).

We wills_ insection6 that'forarbitrary_,(I)persistenceofinvariantmanifoldsforarbitrary

valuesmay bedecidedbycomputation.(2)pardcletransportisgovernedbytlminvariantmanifolds,

and(3)thattheunstablemanifoldistlmobservablestructureinabroadclassofflowvisualizations.

Fromourdiscussionoftlmsyntmetryofthevelocityfieldinsection3,itfollowsthaty = 0 is

alwaysaninvariantmanifold forboth the perturbed and unpe_ velocity field. This implies that

'Fo= W_ u W'_= W_..t_ W'__pers'/_sas an mvariantstreamline. Howe_er, the interpretationof

W:.tandW_'.tismoresubtlesincetheyneednotcoincideasintlmunperturbedcase.Now W',..tand

W_'taresmoothinvariantcurvesanda fluidparticlepathstartingon these curvesintlmcontinuous

time flowisrepresentedasaninfinitesetofdiscretepointson these curvesinthe Poincar_section.As

suchitispossibleforW_',tandW_,e tointersoctinanisolatedpointasshowninfigure4,2.Notethat
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fi_ure4.2couldnotholdintheunpe_ casebecause,forsteadyflows,par_clepath.smustcoincide

w th s-ceamLinesand streamlinescannotintersectin isolatedpointswithoutviolatinguniquenessof

sclu:_onsofordinarydiffere_alequations.Ifwe considertheorbitofthispointofintersectionunder

t,,c Poincar_ map, then by inva_iance of W"._ and W_.t it must forever remain on both W'., and W*

r_sukmg in a geomemcal shape similar to that shown in figure 4.2. This split_ng of the stable mardfbld

ofF. and the unstable manitbld ofp. res,,Its in a mechanism for the u-ansference of fluid between the

v_cimty of the core and the vicinity of the free flow region. It also provides the mechardsm for chaotic

c,'u'acle mouon. For this mason, we refer to region bounded roughly by the envelopes of W__._and
,$

b oz as the mixing region. A precise definition of the mixing region is given in section 6. The mlxmg

r_gmn of course, does not exist for the unpe_ case. One characterization that distinguishes the

free flow region, the mixing region, and d'..: core is that they consist of particle trajectories that encircle

.I vortex zero, a finite, and an infmke number of times, respectively.

Figure 4.2. The Homoclinic Tangle in the Mixing Region.

The MelnikovTechnique

An analytical technique which allows us to predict the behavior of W_.t and W_',_ for small ¢ was

developed by Melnikov [1963] and consists of _ measurement of the distance between W_ z and W_"._.

Up to a known normalization factor, the first order term of the Taylor series expansion about _ = 0 of

the distance between W_ and W_*t can be computed without solving (2.3) explicidy. This first order

term is known as the Melm]cov function. In Appendix 3, we discuss the geometry of the Melmkov

fun_on as well as some of the relevant technical points behind its derivation. In this section, we state

the results of the calculations for outproblem.

The distance between Wf,z and W_'_ is given by

M (tQ)
(to.0 =e +0(F') . (4.I)

I[/(q,(-tO)II

whereq,,(t)isa ,.hetetoclinicfluidparticletrajectoryof theunperturbedvelocityfieldlyinginW,. to

paramemzesdistancealong_F,,and

If/(q,(-tO)II=_/(/_(q,(-tO))"+(/:(q,(-t0)))"

._:.,eMeLmkov function M (to) is defined to be

M(to) = ![f ,(q.(t))g2(q,,(t), t + to) - f 2(q.(t))gt(q.(t),t +to)]tit. (4,2_

and Melnikov's theorem (see Al:_rldix 3) shows us that simple zeros of M(t O) ( i.e. M(t O)= O,
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_M

_t-"o"= 0) imply simple zeros of d (to, ¢) for e sufficiently ,maalL We remark that d (to. ¢) m&y be either

positive or negative as it is actually the s_gned distance between W:._ and W__,t. In Appendix 3, we

show that the sign of d(t@ _) gives us information concerning the relative orientation of W_.c and W__z.

Also _te that t]f (q.(- to))[[ --* 0 exponentially fast as to --* + *_which implies that [d(ro, E) ]--, .* as

_'o4, :l:... This ju._-treflects the fact that Wa+_t and W__,Eo_51Iam tmbotmdedly near p_,_ and p_.,t,

respectively,

We numerically calculate the Melnikov function for the velocity field (2.3) and obtain

M(to) = _ sin (to/_) (4.3)Y

where F( 7 ) is plotted in figure 4.3. Note that for ftxed y, M(to) has an inf_te number of isolated
OM

zeros at which "_o * 0. As discussed in Appendix 3, these correspond to transverse intersections of

W_,_ and W_'_ and therefore we obtain a direct analytical confirmation of figure 4.2. At y = 1.78, F(T)

changes sign, which corresponds to a change in tl_ erie:nation of the intersection of W'_.t and W_"_.

For y= 1.78, M(to) - 0 implying that d(to. e) = 0(_). In figure 4.4 we present the manifolds computed

numerically for several values of 7 confirming the change of orientation of the intersection.

Figure 4.3 Graph of F(?).

Figure 4.4 Numerical Conputation-q of the Invariant Manifolds for Various Parameter Values.

_;. Tangle Dynamics

We now describe the dynamie_'ataociat_i with the tangling of the stable and unstable manifolds of

p,_ and P-.t • Specifically. we will describe the essen_al dynamical mech,u_'ms for fluid txampon

within the mixin8 region. We will see that the propemes of invariancz of the stable and unstable

manifolds as well as the orientation preserving property of the Poinr.a_ map render a temporal

simplicity to the geometrically complex slxuclm_ associated with the tangling of the manifolds. This

allows us to obtain a quanlit_ive hold on the dynamics in the mixing region In much of what follows

the_ will be no restriction on the amplitude of e.

Lobe Motion. We begin with two de(midom:

Definition 5.1. Consider a point q • W' .,t _ W__ and let P.,t q denote the segment of WIt from p,.,t

to q and let P-.t q denote the segment of WU_,tfrom p_,t to q. Then q is called a primary intersectwn

point (pip) ifp.,t q and P-.t q intersect only in q, i.e. P �˜0„�l�c_p__ q = (q}, See figure 5.1.
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Definition5.2..Letql and q2 be two _tjat_ pip.i.e.ther_an:no pipou thesegmentsofW_:= anct

W=__ whichconnectq l and q2.We refertotheregionboundedby thesegmentsof W'._ and W=_,_

wl_ch connect q l and q, as a lobe. See figure 5.1.

The spatial structure of the manifolds provides a natural ordering by time which is useful when we

discuss the flux as well as entrainment and detrainment To describe this ordering we need the

foUowing deErtitions:

Definition 5.3.. Let qt and q2 be pip's. Then we say that qi < q2 if qt is closer than q2 to P-E m

terms of distance along W_.5.

Definition 5.4.. Suppose that L I and L2 are lobes. Then we say that L t < L2 if each of the ptp's

defining L t am less than or equal to each of the pip's defining L2.

Figure 5.1. qt, q2, q3, q4 are pip's, qs is not a pip. L1, L2, L3 al_ lobes with LI < L2 < L3.

W u W sNow let q be a particular pip and consider the regionbounded by p �ˆ�qv p_,5 q w [ .,e _ __].

We refer to this as region A. We will describe the motion of fluid across the boundary of A. There Is

no restriction on the choice of q . In figure 5.2 we choose q rather arbitrarily for illustrative purposes.

Later we choose q so that A corresponds as much as possible to the unperturbed core. See figure 5.5.
1

Figure 5.2. The Ei and Di for F (y)>0.

Definition 5.5. A lobe is called an exterior lobe if no part of its interior is contained ha A. A lobe that

is not an exterior lobe is called an interior lobe.

Now consider figu_ 5.2. The lobes Ei are exterior lobes for i < 0 and interior lo_s for i > 0.

Similarly, the lobes Di arc exmrior lobes for i > 0 and interior lobes for i < 0. The following is our

main result concerning the dynamics of the lobes.

Suppose that the lobes am defined so that for some n > I :

For small ¢, r, is just ore-half the number of simple zeroes of the Melmkov function in one cycle.

•_= 2rt"f, (..ce Appendix 4.) For arbitrary £ we construct W_,5 and W'_,5 numerically and simply track

the progression of a pip during one cycle to determine n.
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The concise observ_on above belies ira many underlying implications:

1. After one cycle of the time periodic strain-rate field (i.e. one iterate of the PoincaN map)

Eo ..... E-.,.l enter region A. Similarly, after one cycle D-t ..... D_. leave region A.

2. The lobes Ei, Di maintain their ordering th_ughout their evolution in time under the action of

the Poirg:ar_ map, i.e.

Ei < Ej implied T k(Ei) < T k(E_)

D_ < D_ implied T k(Di) < T t (Dj)

Ei < Dj implied T k(E i ) < Tk (D!)

for all k. This is a consequence of the fact that the Poincax_ map preserves orientation and therefore the

relative ordering of points along W_'_ is preserved.

Lobe Area. IChaowledgeof the total area of the n lobes, E0 ..... E_ ...t, would tell us the amount of

fluid entering A per cycle. We show that the M¢Inikov fu_tion gives this information for small ¢.

Consider figure 5.3 and the lobe L defined by the pip's qt and q2. Let us denote the infmite._imal

element of arclength along W'__t by ds and let 1(s) denote the perpendicular distance between W'.._ and

w_"_. Thenthe areaof L. denotedg(L), is given by

_t(L)= _f t(s kZs. (5.1)
• q|

figure5.3 Geomeu'yof the Area.of the Lobes.

Now W_.t and W",t can be approximated uniformly on semi-infinim time intervals (see

Guckenheimer and Holm_ [1983] ) and because these manifolds move only an O(e) amount from the

unperturbed manifolds on these time in_rwi-¢ the angle between the line along which d(to. ¢) is

measured (see Appendix 3) and the line 'along which l (s) is measured is O (¢). Thus we can write

1(s) =Iaf(to,_)I+ 0 (_) (5.2)

_IM(tOI
= + 0 (z2) (5.3)

Ill (q,,(- to))II
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and

d_ = _ _o = ii:'(q.(-ro))ll'¢'O(e d_o.
aro

Substituting (5.2) and(5.3) into (5.1) gives

,,. II/(q,(-to))li t�D�X�´�[If(q'(-r°))ll�@�Ü�¨�dto(5.43

tm

= e J"Im(to)Idto+ O(e21
t_

where qu(-tot)=qt and q,(-to2)=q2. Thus we see that the integ,xal of the Melmkov function

between two adjacent pip's gives an O((_) approximationto the area of the lobe defined by the pip's.

Several cornmentaan_now in order.

1. The valktity of (5.4) reliesheavily on the validity of the approx_mmon of the perturbedmanifolds

via regu/arpermrbauontheory which is rigorousonly on semi-infinite time intervals. Thus (5.4)

is only valid for lobes de_aed by pip's which are outside of sufficientlysmall neighborhoods of

P,.t and P-.t. However, in our case, the Poinca_ map preserves area, so knowing the area of

one lobe implies that we know the areaof all the images of that lobe under the Pomca_ map.

2. For our problem, substitu_'Ig(4.3) into (5.4) gives the following expression for the area of the n
lobes

V.(L) = _1 FCy)I+ O (_2). (5.5)

This gives us the explicit d_endence of the area of the lobes on the parametery. A companson

between me numerical calcul_on of lobe area and tm anal_cal renault(5.5) gives good

agreemem as seen in figure 5.4.

Figure 5.4 Compm.,'isonBetween Theoretical and Numerical Calculations of Lo_e Areas.

Now let us returnto our specific problem. We choose the region A to be defined by the pip which

Lieson the y axis. As mentioned above, this is so that the resulting shape of tl_ region is very similarto

the regionof trapped fluid in the unpertm'bedvelocity field, see figure5.5.

Figure5.5. The Geometryof RegionA.

From (4.3),M(to)= (F(y)/y)sinto/Tand,therefore,forsmalle ,oneLobeenmrsmd oneLobe

leavestheregionA duringeachcyclewiththeareaofthelobesequalto2e!F(Y)I+O(e2).Nonce
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fi'om figure 5.4 r_" _r"_= 0.93, F (y) ob_ its max/mum, thus the volume of fluid enlz'a_nedper cycle
is maxima/ at this ¥. The volume entrained per unit _ae is max/mum at y = 0.7 w_,n F( y )/¥ is

maximum. For y : 1.78 the Meln/Jwv function v_m/sh_ idem/caily. Hence _e O (¢2) terms in the

formula for the distance between the manifolds become important. For example, for ¢ = 0. I, we see in

figure 4.4,; thaz the mamfolds am nearly tangent for y =1.38 rather than for 1.78. Numerica/ly, we

observe also r_t near the y for which rdmMe/nikov runcaon vanishes two lobes enmr at4 ieave _e

region A per cycle. (See figure 4.4c. d, ¢.)

F'matlywe norathattheot_servedbehaviorof F(y) as y increasesfrom zero,i.e.risingto a

maximum and men decreasingthroughzeroto neg_ve values,may _ explainedas foLlows.The

honzon_l oscqllationsof thevormx pairhave amplintdeO (ey) whilethevemcal oscitlmonshave

amplitudeO (¢)inde1:)endemof y. Thus forshally r.h.epredominangyvemcal oscitlabonsof _e

vomces and tt_phaseof _m osciUagonsan= such Umt a particleDosibonednearthetop of the

unperturbed core a quarter of _ way lhrough a cycle is "puLled" into region A. As a result lobe El

pmgn_ssesw lobeE1 as shown in figures5.2 and 4.4a.Orl _ oglerhand, forlargey,

predominandyhorizontaloscillagonsof _ vorticesa_zltheirphase conspireto "push"similarly

positionedpaniclesaway fromA asin figure4.4f.At y = 1.38( and e = 0.1) theseopposingeffec_;

canceltofirstorderasseeninfigure4.4(:.

6. Particle Tr'anspoct

In this scion we discuss par_cle transport - d_e flow into and out of region A. The r/me spent m A

depends on the pamcle's initi_ conditions and we define this time as the resu_e_e _,ne. A volume of

fluidthereforehasana.ssoci',m_lres_lencenn_ diarr_bu_on.

The notionof a residencetime disuil:mionisan imponam conceptin mixing systems.For

example,iffluidisinjecr#_limo a c_Jy_icmamor,u_ amour_ ofproductwillt_ primarilyinfluenced

by timtimespentby th_fluidinthe_r. _ p_ suchas chemica/reactionand heator

mass tr_.st'_'hav_ similar_es on the residencetime distribut/on.Danckwens [1953]

discussed _ imlmrmm:e and the application of this nobon forsteady flows through vessels (suchas a

pipe or rank) and the work pmsmm_l hem is similar m his in spiriL Both works rely on the simple

observation that in order to _ the n_idence time dismburion of _ fluid initia/ly in r_ vessel

or in A, o_ needs to know r_ fumm of enmring fluid only. Thou_ d_veloped sepanmly, the method

describedhen;can be thoughtof as a _scmtizabonof Danckwert'swork tomaps, whereagainthe

advantage of working with the Poincar_ map instead of the _ne dependent flow is apparenL

We refer to the motion of fluid into A as enn'aUsmen_ and the mor_on of fluid out of A as

afetra#u_enLFor ourproblemtheMelnikovfunction_ 2 simplezerosperperiodand therefon."(at

leastforsufflciengysm_l e)onelobeiscrammed andone lobeisdetrainedpercycle.We dehornthese

lobes by E and D, respectively, see figure 6.1. This implies that the volume of fluid enu'amed into

n-gionA duringeachcycleistheareaof lobeE ortt(E).Also,:heamountdetnirmdfromregionA
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duringeachcycleistheareaoflobeD orI_(D) andby mcompresslbilityitmustbeequ,d,tol.t(E)and,

in general

_t (Tt D ) = _ (T_ E ) (6.l)

for a/l l,k =O,a: 1, :t: 2..

In this section we discuss more detailed questions of parncle transport ,__hich can be answered by

applying the follewing rules:

R1. Fluid entering region A on cycle k must be in E on ,:ycle k- 1.

R2.Fluid_eavingregionA on cyclek ruustbe inD on cyclek-I.

R3.Tt(E)cannotintersectT"(E)andT_(D)cannotintersectTk(D'_foranyk,l=0,:I:I,.+.2,-.

RegardingR3,we notethatitispossibleforTi(E)tointersectT _fD)forsome integersl andk.

The questionsw,;wishtoaddressam:

I. How longdoesittakefluidtoescapeA giventhatitstartedinA?

Remarkably,itwillnun outthatansweringthisquestionisequivalenttoanswerir_thefolio'.,

question:

2. How longdoesittakefluid;zescapefromA giventhatitisinlobeE initially?

More _pecifically we wish to determine the residence tlme dismbution._ for the two imtial conditions

mentaoned above. The answer to ciue_on I may be obtained by brute force calculations, where a large

number ofi::jtialconditionsinA atei_..tegratedatulthenumberescapingeachcyclearecounted.The

results of .¢'uchealm_tions for two y values am presented in figure 6.10a,b. The simalan.'y to '..he

mamfolds sha_ as seen in figau"e 4.2 and demonstrated in figure 6.10c is not accidental, it is a

mamfestmon of tim lobe dynamics as described in section 5. Usmd the lobe dyrmmics enables us to

reducetheproblemtothecomputationoftheresidencetimedistributionforlobeE only.

Escape Rates

We considerfirstfluidthatisinlobeE imtially(atcycle0). As discussedpmvtoualy,afterone cycte

thefluidinE entersA. However,atsome latertime,saycyclek-l,a portionoftheoriginalfluidmay

foundinlobeD andthereforew,llescapeA on thenextcycle.We defineettobe Ctatportion,i.e..
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et = volume trf fluid in lobe E at cycle 0 that escapes A on the k _ cycle.

clearly,

ek=R(T _'tEmD) k=l,2 .... (6.2a)

and

et = 0 k 5 0 (6.2b)

Note that the corresponding distribution of escape times is gaven by et/I.t(E). Using incompressibility

(6.2a) can alternately be written

eL = _E :'_T"t Ü�T�Œ�k=l,2..... (6.3)

Figure 6.1 illustrates the geometry associated with (6.2a) and (6.3)

Hgu_6.1 a) e3=_t(T2E _D) b)e3=l_(E mT-ZD)

Note that replacing E with _ E in (6.2a) and (6.3) gives the volume of fluid in lobe T-_ E at cycle 0

that escapes A on the k a' cycle. This is dearly equal to et_. In fact. the et's contain information

concerning all possible intersections of any Ei lobe with any D! because

eL = tx (T"'_-i£ _ T_D ) m = O,± 1, ± 2....

In figure 6.2 we illustrate the ease m = - k +1 by displaying the sets E m T" t �lD for several values

of k and y = 0.5, 0.9.

Figure 6.2. Geometry of E m 1,.4 • tD for Various Values of k. a) y = 0.5. b) y - 0.9.

Now we coasider the escape distribution for region A and define escape volumes as follows:

at I VO[ O) ¢ ,_ in region A on cycle 0 that escapes on cycle k.

From previousdiscussionsitfollowsthatfluidleavingA on thekt_cyclemust be inthelobeT"t  �`+atcycleO. However notallof Y"t"ID was inA atcycle0 sincepomons o¢F"t*'tDmay intersect

T"tE, 0 < 1 S k, and should not be counted. So it follows that

J,

at = _T"t �H.l_ I.t(T-**tO _ T-rE). (6.4)
l,,,0

where the sum in (6.4) repre",,ents the vohu_e of T'4"4D that is also in some _ E for 0 SI ._. By
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mcom.m_,ssibili_we have

_(T"*')D ) = p.(D) = p,(E) (6.5)

and from (6.3) we b._ve

ekq = IJ.(T-*+iD_ T-_E) (6.6)

Using (6.6) and (6.5) allows us to simplify (6.4) as follows

ak = _t(g)- Z ek-_
l,=O

or

k

at = _ (E) - _ el (6.8)
I,,i

Thus, to compute at, we need only information concerning the dynamics of lobe E, namely the et.

We fundet numerically by computing _ escape cycle for each member of a rcgulazarray of grid

points m lobe E. To verify the relation between _ et and the at given by (6.8), we have also

computedtbeatforoneparticularchoiceof_ parameters_and7bya "bruteforce"calculmonusing

anarrayofgridpoinrainr_gionA.Theresultsan=showninfigure6.3andconf_m(6.8).

Figu_6.3ComparisonoftheBrut_ForceCalcu1=onandtheReducedCalcul_onfor7= 0.5.

We notethatwith Littleeffort we canobtainother@anti.i= whicha_ of physica/interestin terms

ofthee_suchas:

rk = volume of flutd imtfugly in A that remains in A after k cycles.

clearly,

rt = rt.i - at (6.9_

or

t

rt = _ (A) - _ a_ (6. tO)
t==|

Using (6.8) we obtain:
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k

rk = _. (A) - k _. (E) + _ (k - i �I)ei (6.1 I)
lsm[

k

Si_ e, and r_ are _.mm and posi0ve and _ ei S _ (E). we deducethat

_e_ =g (E) (6.12)
4ml

_, (i-l)e_ =_(A)-_.(C) (6.13)

where r, = N.(C) S p.(A) and _ (C) is the volume of fluid initially in A that never escapes, i.e. the

volume of the core of A. The relation (6.12_ is also evid=m from incompressibility. We note also the

mvJrsion formula

e_ = rk - 2rk-i + rk_2 (6.14)

The MixingRegion

We arenow in a positionwh=re we can pre_solydefinethemixingmgior).By definition,fluid

particlesnotineitherthefreeflowregionorthecornmusthave trajectorieson thePoincax_map that

enterand leavetbe n)gionA. Now in orderto enterA the fluidparticletrajectorymust Le in

T_ E. k=0,1,2.....In ordertoleaveA thefluidparticletrajectorymust alsobe inT"*D, k=O.1.2.....

From (6.12)theloboE (and,l_nc¢,by.invariance,alliteratesofE) iscompletelyfriedwithpiecesof

T*D .forallk. Hencethemixingn:gionisgivenby

Im

• _ D_ (6.15)
k m,,,_ •

The significanc_of thisdefmilionisthe itallowsus tochar_terizetl_n_gionof exm_melycomplex

fluidmotioninfarmsoftlmmotionofa fluidlineelcmem offinitelength(i.e.tlmboundaryofthelobes

E and D).We noraalsothat(6.15)givesusan additionalcharac_rizazionoftimmixingregion.Namely.

fluidpaniclen-ajectoriesinU'_mixingregionmustmake atleastone revolutionarounda vomx.

The Unstable Manifold as an Attractor

In ge;_ral one would like to know the rc.sidencc brae distribution associated wilh any initial shape B

of finim area. This seems at the momem too difficult a question. Qualitatively one expects to have

similar behavior as obtaine,d for A. Specifically, for any initial shape B which can be regarded as

disu)mon of A (i.e. B includes non-mvial parts of the mixing region, namely it is not contained in one

D lobe), the dominant s'u_cmm which will be visualized and which will conffol tim transport is W"_._.
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This is a result of the motion of lobes which accumulate on W.*.. as t -.., ,=. and the as__¢umptionthat B

has fzrum area. For example, consider the case in which B overlaps A on the upstz_am side. For large

enough k*. T'_E contains a very small portion of B for all k > k', which implies that for k > k"

T_B will have a very narrow layer upstream of W"-.t, see figure 6.4. The above arguments apply to a

broad class of flows having similar strucRtm, namely hyperbolic stagnation points with cyclic motion

neat them, implying that t/'.e unstable mamfold is the observed structu_ in many flow visualizations,

depending on how the fluid is marked.

Figure 6.4The Mouon of a General I.rdtial Shape B, a) t=0 b) t=2,.ry c) t=4_:y.

A remarkable demonstration of the role of the unstable manifold as an attracting set is obtained by

comparing the computaaons of the unstable manifolds for pardcle motion in the presence of two

idealized, leapfrogging vormx rings (Shariff et al. [1988], Shanff [1989]) with flow visualizauon

experiments of two vortex rings by yamada and Matsui [1978]. These comparisons have been

reproduced in Aref and Karnbe [1988, figure 8] and the reader is referred to them. In the idealized flow,

the motion of the vortex rings and, therefore, the velocity field is periodic in tune in a frame moving

with the average speed of the rings. Ring motion is computed according to Dyson's [1893] model and

consists of (I) an axial self-induced compolxent that is propomonal to (I/R (t) log (R (t)/8(t)), where R

is the the ring radius and 8 is the core radius (R 8_-coast) plus (2) the velocity conmbution of the other

ring.In theexperiment,a smoke wirewas stretchedacrossthediameterofthepipe.Hence tracer_s

injectednotonlyintothesepatatmgboundarylayerwhichroUs-uptoformthevorticalcores,butalso

intotheirrotarionalorweaklyvorticalfluidsurroundingthecores.The smokebeginstorevealeventhe

finescalefeaturesofthemanifold.

As anotherexample,considertran_rt inthevicinityofa singleunsteadyvortexring.Inthecase

of an ideal,steadyaxisymmetricring,limitingstmamsurfacesseparatethefluidnearthevorticalcore

thatmoves withtheringfrom fluidinthefreeflowregionandthem isno exchangebetweenthetwo

regions._ mostcasesofintem,st,'wbemthetoroidalradiusof thevorticalcoreisnotsmallcompared

totheringradius,frontandrearstagnanonpointswillexiston theaxis.Fora turbulentvortexring,the

velocityfieldisthree-dimensionaland uftsteadycorresponding,of course,to thethroe-dimensional

motionsof thevordcityfield.Thus,tht_.<limensionallobelikestructurescontinuallypiercetheideal

streamsuffacefrom both sides and become severely distorted as they encotmmr the rearstagnation point

of the ideal flow. These stnlctm_s ate revealed in the studies of Glezer and Coles [1987] (see figure 6.4)

where it is seen that marked fluid that is injected into the ring during formation is deposited into the

wake in the form of throe-dimensional lobes. Finally, in the case of ideal, unsteady axisymmeo'ic vortex

rings, Shariff [1989] has demon.stinted computtdonai!y the presence of lobe structures in the Poincar_

map for the flow in which the time-period perturbations am caused by the ellipticity of the vortex cores.

Figure6.5Flowvisualizationofa turbulentvortexring.GlezerandColes[198"7].
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Numerical Results and Discussion

We now present numericalresults for the residence t_ne distributions, (et, at, and r_ properly

normalized) and discuss theirdependence on k and the parametery. In particular,some characteristics

ofthenu_mencalresultscanbereadilyunderstoodfromthemanifoldsu'ucture.

Theet=it(Ec_T'tD) canbecomputedinoneoftwoways:

I. Computeme boundariesofthelobesE and7"-*D andfindtheareaoftheirintersection.

2. TrackareaelementsoftheinterioroflobeE todeterminer.heareathatescapesA ateachcycle.

Althoughthefirstmethodistheoreticallymoresausfying,_em aretwosubstantialdifficulties:(I)

theproblemof_e exponennalstretchof_ manifoldsandthusofthelobeboundaryand(2)the

determinationoftheinteriorofa tangledboundaryforlargek. We thereforeusethesecondmethod

wherethegridmeshonE waschosentobesufficientlysmallInfigure6.2,forlargek,itappearsasif

theescapeareaiscomposedofanumberofisolatedareaelements,butthisismerelytheresultofusing

afinitenumberofnondeformingareaelements.TheactualareasinEm 7"tD mustbecomposedofa

finitenumberof shapesthatconnecttoeachotherortheboundaryof E sinceT-_D issimply

connected.The appearanceofisolatedcomputationalpointsfora relativelyfinemesh(dx = dy =

0.005) showsthatthewidthsoftheinteriorregionsofEc_T"tD becomeextremelynarrowand

demon._'atesthedifficultiesonewouldencounterwhenusingaschemethattracks,.heboundaryofE or

D.

It is inmmsting to note how the quantities vary according to oualitative featuresof the manifolds.

F]gure 6.6 contains plots of et for two ¥ values. The rapidoscillations of et with k is typical for all

values of y and is discussed below.

We include log-linear and log-log plots as an aid to identifyingpossible exponential or power law

behavior but, because of the l]ucma_om of the et for small end large t. we will defer the discussion of

these possibilities un_ the at am p_ The small/c fluctu_ions consist of two-cycle oscillations

with even k maxima and odd k minima. We explain this phenomenon as follows. Note that the

invarianceof the manifolds gives eu = g(TUE :aD )= tt(T*E c_7"-_D ) and

eu-t= P,(Tt-IE:_7"_D).Now inthesymme4_icPoincan_fmap TiE and7"tD am minorimagesof

eachother.Sincanear8"mx axisbothlobesam fiat,we willobtain,ingeneral,a largervolumeof

intexwctionthanisobtainedina "transversal"intersectionwhichoccursintheasymmetricintersection

of/'k-tEC_T"tD. However.secondaryintelsectionsfarfromtheneighborhoodofthestagn_on

pointwillrelaxthisdifferenceas_ increases.Thusthetwo-cycleoscill_onoftheetdecays.For

largert (k_;20)thefluctu_onsobservedinfigure6.6am duetothest_isticsofthecomputation.We

haveverifiedthata freermeshwilldecreasethesefluctuations.

Figure 6.6 The e,.
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The ak am shown infigure.6.7.Notethatforsmall_:theak,asa functionof7,increasewithy up

toy - 0.8t.he_decreaseuntil7 = 1.3thenincreaseagain.Thisbehaviorisdirectlyrelatedto the

entrainmentramorlobea.magivenby 2EIF(7)I Ì�|	��˜�(seefigure5.4).Usingfigures6.7d-6.Tgwe

canmake tentativeconclusionsregardingtheasymptoticbehavioroftheat forlargek for7 - 0.5and

0.9.Figure6.7dsn'onglyindicatesexponentlalbehaviorfor7= 0.5or

i.e. a constant probability of escape from A-C for large ,,. For y < 0.5, similar exponential behavior ts

indicated. For 7 > 0.5 there are no strong indications _or either exponential or power law behavior v_th

the possible exception of y = 0.9. For y = 0.9. figu_ 6.7g suggests a power law behavior for a_ or

ak - _ (rj:-r,)

i.e. a decreasing probability of escape as ]c ---) ==.

Figure6.7 The at.

Fitting an exponential for tl'.: ak by using a least square method for the log-linear plots, we can

compute r, using (6.10):

C g-n_o
r_ =rk, .1 -- _# ai -- _.-I

, ,,,_, I - e -a

where c and a ate related to the best linear fit coefficients. "Vne results arc presented in figure 6.8 where

r_o, r,, and the bounds on r. computed via the least square method az_ presented. The exponents we

get a._ relatively small and therefore the linear fit to the log-linear plots, as well as the results for r,,

should be taken with caution.

Figure 6.8 The CornArea.

The coreC isnotnecessarilycomposedofonlyoneregion.Infact,we findthatthecoresplitsinto

atleasttwo separatedomainsfory = 1.38forexample.Thisisindicatedtom thephotographsofthe

escapemap (figure6.9a,b),inwhichtheredregionscanbeapproximamlyidentifiedwiththecore.

The appearanceofa differentnumber ofreglonsw_thboundedmotionfordifferent"/'sistheresult

ofthedistinctiveresonancesassociatedwitheachy value.Recallfromsection4 thatthestreamline

associatedwith a p/q resonanceis determinedvia the relationT(1)/2a"t=p/q.Therefore,as 7

increases, the streamline corresponding to the above relation has larger penod and hence must be closer
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to the mixing region. Therefore, assuming that the largest KAM torus position is approximately

independent of 7, we expect that as 7 increase.s more resonance bands ate pre,_.nt outside the largest

KAM torus and with fu.nhcr m_ in 7, they Wproach the manifolds and become unobservable. The

scenario which is shown in figures 6.9 and 6.10 fits the above description as follows:

For y = 0.3 the p = 4 q = I resonance band outside the largest KAM torus is mardfested as four

whim spots outside the large white region - the main core. (In figure 6.I0c the unstable mamfold is

plotted, and the white reglons are the mgiorts which the manifold cannot penetrate). In figure. 6.10a,

where tim escape map for y= 0.5 is plotted we observe only one core region - the .7 = I p = 4

resonance band disappeared in the vicinity of the manifolds and no other resonance bands appear. As y

increases to y= 1.38 the p = I q = I resonance band appears outside the largest KAM torus and two

core regions are revealed in figure 6.10b.

Figure 6.g The unstable manifold for y = 0.3.

Figure6.10Escapemap fora)y= 0.5,b)y= 1.38,c)y= 0.5withthestablemanifoldofp. inwhite.

7. Chaos

We have seen that transport between the core and the free flow region can be understood by

studying the interaction between the stable and unstable manifolds ofp.,e and p_,_, respectively. Now

we want to show that this interaction gives rise to another important dynamical effect, namely chaotic

fluid panicle motion.

Roughly speaking, cha(_d¢ fluid particle motion may result when smlctu_s in the flow conspire to

strongly stretch, contract and fold a region of fluid. In our flow the tangling of the manifolds provides

the foldingmechanism and the _kxedpointsP "��Œ�andp=,_ provide the sttetc.hing and contraction

mechanism.The notionofchaosismade unambiguouswhen we show thatthisscenarioenablesllsto

provethatthePoinc,a_ map pos._.ssesSmalehorseshoesusingtheSmale-Birk.hoffhomoclimctheorem,

seeGuckenheimerand Holmes [1983]or Wiggins[1988].Considerfigure7.1and the"rectangular'

regionoffluiddenme.dR. Followingtheevolutionofthisregionunderiterationby theP,':_.canfmap T

we seethatit,sfolded,s'n'etched,andcontractedandeventuallymapped backoveritselfiz,¢, shapeof

a horseshoe.

Figu_ 7.I.The GeometryoftheHorse_oe Map.

We leaveoutthedetailsbutusingtechniqueswhichcan be foundinMoser [1973]or Wiggins[1988]

onecanshow that"R" containsan mvmant cantorsetA suchthatT"IA,forsome n >I,has
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I. A countableinfimtyofun.,-_.aJole._riodicfluidpa_clemotionsofaIlpossibleperiods.

2. An uncountableinfinityofunstablenonperiodicfluidparticlemotions.

3. A fluid particlewhose orbitunderT" eventuallyapproacheseveryotl,erpointinA arbitrarily

closely.

A iscalleda chaoticinvariantsetforT". We remarkthatinMoser [1973]and Wiggins[1988]_tis

shown that by a conmmou.s change of coorflina:es T'I A can be transformed into a Bernoulli process

hence making precise the notion of deterministic chaos. The construction shown in figure 7. I could be

:epeated near any u-ansverse heteroclinic point hence Smale horseshoes and their associated chaouc

dynamics exist ttu'oughout that part of the mixing region in A.

So the existence of transverse hetemclinic orbits in a heteroclinic cycle give rise to Smale

horseshoes and are therefore the underlying mechanism for chaos. The Melrfikov function allows us to

determine if u-an_erse heteroclinic orbits are present in the flow and hence give a specific criteria for

the presence of Smale horseshoes in terms of the system parameters.

It should be apparent that the presence of horseshoes in a fluid flow may have a significant effect on

neighboring fluid pardcle motions. However, it is difficult to quantify this effect. Two things ,,;an be

said:

1. The unperturbed velocity ,_eld is integrable; therefore qtpical fluid pax,:cles may separate ,_t a

linear rate at best. However, m the pe_ velc'._ity field, nearby fluid panicles may separate at

an exponential rate and mo_over ¢a, presence of horseshoes may cause fluid particle motions in

the mixing region to become.: rapidly uncorrelated. Int_.avely, one would believe that horseshoes

are desirable in order to enhance mixing. We discuss these issues in the next section.

2. In order to quantify the mi_mg of fluid between the core and the free flow region one must

understand the dynamics of the interface, i.e. the stable manifold of p Ð�„�andthe unstable

manifold of p_.¢. This is a to)pie which we are currently investigating in more detail. However,

from our previous description a significant observmon can be made. "mat is, in the unperturbed

velocity field the interface sep_g the core and the free flow region has finite lenTh but in the

penutt)edvelocity fieldthisL,ucrface has infinite leng'_

8. Stretching and Elongation ofMaterial Elements

Inthissectionwe investigatetherateof stretchingofmaterialelementsintheOscillatingVortex

P,ur(OVP) flowand itsrelationto thetimespentinthemixingregion.The classicalmeasurefor

quantifyingthe localstretchingof materiallineson _e averageistheLiapunovexponent,seefor

exampleKhakhar,Risingand ottmo [1986].The motivationforcomputingtheLiapunovexponentts
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that it quan_fies tile chaos in some systems; when a positive exponent exists nearby :rajecmriesdiverge

from_ach other exponentially. This notion is pamcularly useful when dealing with dissipative systems

with am-actors,since then all initial conditions will eventually diverge as much as trajectories on the
am'actm"diverge. In the OVP flow we have proven the existence of chaotic orbits and we _erefore

have positive Lia_nov exponents for those orbits. However, this set of chaotic orbits is of measure

zero. Nevertheless, these orbits are responsible for the expansionand contraction in the mixing region:

material elements passing through this region will experierw..ethe exponential stretching and contraction

of the chaotic orbits. Most material points remain in this chaotic zone for only a finite time, which

implies that thmr exponents vanish. Hence, in our application,the Liapunov exponent is not a usefxd

measure of the stretching of material elements. To quantify this phenomenon we consider the total

stretchor elonganonof a materiale,lememdue to its motionthroughthe chaoticregion. As discussed

in scion 4, we concenu'ateon analyzingthebehaviorm themixing region.

We startby defining the stretchingrate and its relationto _ LiapunovexponentfoUowingthe

formulationof Khakhar,Rising,andOmno[1986]. Wewrite (2.3) togetherwith (2.5) in the form:

- F(p, t) (8.1)

where p = (x, y ). The linearizedequation about an arbitrarysolution of (8.1) is given by

m = DF(p(t), t)m (8.2)

whereDF isthematrixofpam_lderivativesofF.

We definethes'_tchofaninfinitcsmialmateriallinedxemanatingfromp withorient_onm at

t=0asX(p,m, t).Itisclearlygivenby

• x¢o.m,t)* lmt)[ (8.3)

wherem (t)isasolutionof(8.2),m _JO.TheLiapunovexponentoftheorbitp isdefinedas

a(p,m)= liraI-In;Kv.m, t) (8.4)

We now concentrateontheregionofourinterest,themixingregion.By (6.15)thisregioniscomposed

of k..)Dk; thertfomwe n:'cdtoinvestigatetheorbitsintheDk lobesonly.Whilep isinthechaotic
/ttt-._

region,we expect,bydefinition,thattheinstantaneousstretchingrate,_--,willhaveapositiveaverage.

Afterp cscapeshowever,we expectstretchingtodeceasesubstantially.Infactwe havebeenableto

show(Rom-Kedar[1988])that
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In _,(p, m, t) = 13(;,,m) + ZfP, m, t) + O(-_z) for t>to (8.5)

where to is the time required for p to be entzaix_d and then escape from the chaotic region and

_fp, m, t) is a periodic function in t with zero mean and is a result of the oscillating strain-rate field

that persists far from the vortex pair. This behavior is demonstrated L,aFigure 8. I where we show In k

and _ for a particle initially in the chaotic region and escaping alter 12 cycles. Also shown is _k

averaged over each period to filter out the X component.

Thus the Liapunov ex_onent given by (8.4) is identically zero for almost all particles and, in OVP

flow, 13of (8.5) remains as the useful physical quantity which measures the total elongation of a Iir_e

element. In particular we will concentrate on the maximal elongation of an infinitesimal neighborhood

:,round p with exponent given by

= max rn)

Physically, an infinitesimal dye blob of radius Im [ placed at p at t=0 will have its length amplified by

exp (9) while it is in or near the chaotic region and, from then on, its length will oscillate periodically

with mean exp (_) Im _ Note that we need to maximize 13over m in contrast with the procedure for

finding the largest Liapunov exponent, where almost all vectors will stretch at the same rate even.".

This is the result of analy-zmg the finite time elongation instead of the asymptotic result. The memod :_

obtain _ follows.

Let M(t) be the fundamental solution matrix of ecluaaon (8.2) so that

M =DF(p(t).;)M (8.67

• M (0) = I

Then, a general solutiov m (t) of equation (8.2) is given by:

m (t )=M (t )m

Therefore,

maxM/),m,t)=max mr MrMm Vp(MrA4),n

where p(MrM) is the maximal eigenvalue of MrM. (Note that in general "Jp(M_M)_p(M), see

Goldhirsch et al. [1987] ). To compute p(MrM) = p(MM r) we develop an ODE for the components of

MM r, noting that in two dimensions p(MrM) = p(MMr).
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Since the OVP flow is ix'rot_onal and incompressible_ mmxixDF (F(t),z) is symmetric and has
the fo:m:

la(t)b(t)1

=ibO)

wbe.,_a(t>=-_x(P(t),t)b(t)=_ (p(t),t)

Using F-_l.(8.6) and the above form of DF we obtain

aMr
d r dM Mr + M = (MMr)DF + DF(MM r) (8.7)>=-'3- "3-

Now MM r is a symmetric matrix of the form

Andequation(8.7),writ_nincomponentformgivesa sys_mofthreeODE's forthematrixelements

q,r,s. Sincedet(MMr>=lwe obtainthefollowingexpressionfor0(MMT):

q +s+_/(q+s)Z--4
P(?fMr) " 2 "

The quantityq + s can beobtainedeither from the ODE's for q, r, and s or by solvingthe integral

equation:

(q+$)2".,4 a(t'),(q+sXt 3dt 4.4 (t') (q+$)(t_)alt +4.

Using the form_ technique we Imve found _ for a sample of 530 imtial conditions in region
mD

A _k..) D._. The results ate presented in Figure 8.3 where ¢¢eplot _ versus the escape cycle of p.

Though _ 'akes on a rangeof values for each escape cycle, the general tendency of _ to increase with

theescapecycle,asexpected,iscleat.InFigu_8.4,we showtheaverageof_ overthesetofinitial

conditiorahavingthesame escapecycle. The results indicate that the averagestretchingrateis

correlatedwithresidencetime,namely,a longerresidence_meimpliesa loweraveragestretchingrate.

To summarize,we haveshownthat theLiapunovexponentsvanishin the OVP flow in the mixing

region. This is a result of the flow being openwith localizedchaos,allowingfluid paniclesto be

convectedto infimty _et a finite amountof su_tching.Thereforeweu_ethe total su'etch,exp(_). the

elongationof a fluid elementwhile in or nearthe chaoticregion,to quantifythe chaos.We foundthat.

1990015254-037



on the average, this quantity incr_a_s with r_id_ce _c but that _c averagesu_tcning ram tends to
decrease _m residenceume.

9,Summary and Conclusions

We haveinvesagatedtheflowgoverredbya vormxpairinthepre_nceofanexternalst.rain-rate

fieldthatoscillatessinusoidallyinume.Inparticular,we studiedtransportandmixingofpassive

particlesinthisflow.The flowdependsontwodimensionlessparameters-theperiodoftheosc111ation

dividedbythetimerequiredforthevortexpairtotravela distanceequaltotheirseparationandthe

strum.rateamplitudedividedbytheoscillationfrequency.

If the amplitude of the external field is zaroL.hen,in a framemoving with the vortex pair, the flow is

steady. A fixed, closed volume of fluid is t:apped and moves with the vortex pair for all time. This

volume of fluid or "bubble" is bounded by two Limitingstreamlines that connect at two hyperbolic

stagnation points, one on the ups_am side of the bubble and one on the downstream side. No

entrainment or detrainment takes place into or out of this volume. Mixing is poor as two ._arbclesan

infinitesmial distance apart only separaxeat most linearly in time for large times, i.e. the Liapunr

exponent is zero.

If the strain-rate amplitude is nonzero, the flow is time-periodic in a framemoving with the average

speed of the vortex pair and each vortex moves on a closed orbit in this frame. However, some paracle

motions are quite complicated. During each cycle of the oscillabon a certain volume of fluid that

approachesfrom the upstream side is _trained into the fluid bubble moving with the vortex pair. A

particle within this entrained fluid volume moveschaotically during its time of residence in the

comoving bubble. These particles subsequently escape (are detrained) according to a discrete

dismbution over the number of cycles in res':Aeacetill escape. Another distribution of residence times,

thatcorrespondingtothoseparticlesinitially._thebubbleatcyclezero,iseasilycomputedfromthe

formerdismbution.

A quanmafiveunderstandingofthistransportmechanismwas bestachievedby examiningthe

Poinc:,_map forthepaniclemotion.Inparticular,we consideredthestableandunstablemanifoldsof

thetwohyperbolicILxedpointsofthemap.Fortheunperturbedflow,thefixedpointscoincidewiththe

stagnationpointsintheflow.Similarly,theunstablemanifoldsoftheupstreamfixedpointandthe

stablemanifoldsofdm downstreamfixedpointcoincidewiththelimitingstmanflinesintheunperturbed

flowand,therefore,coincidewitheachother.Fortheperturbedflow,thesemanifoldsbreakapartand

intersecteachothertra,-_sversaUy,forminga tangle.Withint.histangletherearetwoinf_tefamiliesof

lobesviththeboundaryof eachlobeconsistingofa segme_ oftheunstablemanifoldand,the

remainder,a segmentofthestablemanifold.Any givenlobegeneratesallotherlobesinthesame

familybymappingbackwardsandforwardsintime.
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One lobe in particular will be ¢_ during the next cycle and, in me other family, there is a lobe

will be detrained. By incompressibiliWall lobes have the same volume and it is this amount of

fluid therefore rJaatis cnmamed and detrained during eachcycle. Lobes within a given family do not

intersect one another. However, lobes from one family intersect members :,_omthe other fanuly. The

areas or volumes of intersection corresponddirectly to the residence time aistributions mentioned

above. Thus we have a tangle dynamics. Namdy all information concemml!; LTmL,cponor dispersion of

particles m this two-space plus =,-he-dependent flow field is generated by one-dimensional objects - the

stable and unstable manifolds of the fixed pomm of the Poincar_ map.

The above results do not require that the strata-rate amplitude be small. Howeve,_, if the amplitude ts

small we used regular perturbation theory in the form of the Melni.kov technique to check for the

existence of u'ansversal intersections and to esRmate the width of the fluid zone along the ong'maI

dividing st_amiJm that participates in the exchange process. Lnaddition we have shown that the lobe

area is pmpomonal to the integral of the Melnikov function over one cycle. This analysis showed that,

as the period of oscillation incn;ases from zero, the entrainment ram rises from zero to a maximum then

falI._ to zero and rises again. This behavior is the result of two competing effects concerning the

advection of particles near the limiting sm_amlineat the top of the bubble, one effect is to advect

pamcles into the bubbleduring one cycle while the other advectsparticles away from the bubble.

For arbitrary values of the su-ain-rateamplitude the lobe sn'ucture may be computednumenc_y.

This is a relanvely simple matter because the unstablemamfolds am atlzaCtO_'Sin forward time and _e

stable mamfolds am am'actorsmtegra_g backwards in time. Of course, as one attempts to follow ,,

given lobe for a large number of cycles a rapidly increasing number of points is required to define the

strucx'umofthelobeboundarybecauseof thechaoticmotionoftheboundarypointsthatremaininthe

bubble.Lobe intersectionvolumemay be computedby tr,tckinglobeboundariesasdescribedabovebut

as an alternativemethod,and theone used in thispaper,one can simplytracka uniformarrayof

closely-spacedpointsthatinitially_ onlythelobethatwillbeentrainedduringthenextcycle.

We have shown that the exis_ce of _ers¢ heteroclinic orbits, i.e. the lobe structures,gives rise

to Smale horseshoes as a result of a stretching and folding mechanismpresent in the Poincart_ map.

These horseshoesrepresent the underiym$ mex.hamsm for chaotic particle motion. To quantify this

chaoticmotionand,inparticular,timram ofstretchingof materialelements,we investigatedthetotal

elongationofaninfmitesmialmaterial¢lemtmtanditsdependenceon timespentwithinthe bubble.

The conceptsandanalysisdiscussedinthispapershouldbe usefulina widevarietyofapplications.

Furtherdevelopmentmightconcentrateon (I)extemionofthepm,e,ntresultsfortime.periodicflowsto

quasi-periodicor chaoticfluidflows,(2)connectingtilepresentwork to coarse-grainedapproachesto

turbulenttransportusingconve_tion-diffusionequations,and (3)developinganal_caltechnique>for

thelobemrersectionproblemby,forexample,de.nvmgappropriateone-dimensionalmaps.
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Appendix h Vortex Pair in a Wavy.W_ll Channel

We shov thatthepaniclemotiongivenby (2.3)and(2.5)approximatesthemotionm thevxcimtyofa

vortex pair moving in a wavy-waft channel. Consider the foUowing solution to _he Euler equations,

given by the su'eamfunction of a vortex pair, _F,, plus the su'camfuaction of a potential fl:-w:

_Fffi_F, + "_'_ (Al.la)

where

(x -x,,) 2 + (y - y,)2 (Al.lb)log
(x - x.,,)2 + (,y + y, )2

and

• _ ffi(V + eVl(_))y - -_:_s(/_)sinh(ky) (Ai.lc)

Here+ F arethe circulanonsofthevorticeswhoseposit_onsare(z,(t),±y,(t)),V �eVt(e) the acerage

fluidvelocityinthechannelfaraway.,f_mthevortexpairand eVx(e)isdefinedsuchthattheaverage

velocityof thevortexpairisina_enOmt ofe (seebelow).The vomc_ move withthefluidvelocity

givenby

• = - , (A 2)
_ _ c_x

For¢ = O,we have

F
_(t) - (V + "7"___)t (AI.3)

4T_I

y,(t)=d

Setting'Fffi'.F,,,_tfficonstin(Al.la)andassumingthat Y" <<I we findtheequationforthewall

boundary,
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y - y._t (x) (A1.4)

'F,_z _V I(0)'F_ e k _t',._

- -,-kTvsinh(----_--)cos(_)+0 (eb+ 0( y" )V Vz Y,u_

confirmingthatequations (At.1) r_resem flow in a wavy-wall channel where the wails are sufficaently

far from the vortices.

Now we compum par_clemoronby (AI.2) and let x =_ +f(t), x_(t)=,_v(t)+f(t). If _'_ <<I

and 're consider the flow field near the vortices with ky << I, then we obtain the desa'ed form:

r 0, -y,) y +y, !
-- =- -- - , (A1.Sa)
at 2_ (,_- ,_,)2+ (y _ y, )2 (__ _,)2+(y +y,)_ i

- v,,+_sin(_)+ 0(_)

dy 1"0_ - _,) I I I .1

dt - 2_: L (_ - _ )2 + o, - y, )2 - (_ - _ )2 + (y + y, )2! (A 1.5b)

- eysm(_) + 0 (e:)
t

if f(t) is t.he solution to

# = - _s(kf(,_) + v �¢:w:(e)(A1.6)da

where V:(e) is defined such that

f(t) = (V + -_-_)t + cg(t.¢) (A1.7)

where g is periodic in t. We alsohavethat

I"
o =k(v+---=) (AI.8)

and

F
w

V, = 4_ _Vt(_) (A1.9)

Appendix 2: Expansion of the Equations of Motion
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The nondhn¢_Aonalequauonsofmouon (2.3)have_e foUcwinge_par_ionine:

d,x =/ t(x, y ) + _g x(x, y, t/y ; y) + 0 (_) (A2. la)dz

dy = f 2(x.y_+ _g2(x,y,t/T;7)+ 0(¢2) (A2.1b)cl.t

where the f, are given by:

v-I "¢+I I
--- (A2._a)
l_ [.,. 2

f2 =x I / ! [ (A2.2b)J-

andtheg,ategivenby:

( 1 1 2(_-I)2 2_+1) 2}g,=[cos(m,)-l] _+t_- 12 H *

/o ; - _- (A2.3a)

Z.=.LZ._,+g2=2.=[cosO/v)-11 t3 + t.= J

The definitiom of I= an=

It ==x: + (y +1) 2 (A2.4)

Appendix3:The MelnikovFunction

Inthisappendix,we wanttodiscusssome aspectsof theMeinikovFunction.Specifically,how it

arisesandwhatitmeasures.Recallthatthep_malx,d velocityfieidcanbe writtenintheform
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.t = f .,(x,y ) -'- sgi(x, Y, e: y) _-O(e:)

y =f2(x,y) + Eg2(x, y, O, y) + O(E2) (A3.1)

0=l,y

AS a convenient shorthand notanon we will often write (A3.1) in the following vector form

q = f (q) + eg (q, 0; y) + O (ez) ¢A3.2)

e - 1/3'

where q = (x,y ), f = (f l, f :.), and g = (.g:, g g.

In each case the unperturbed velocity field is obtained by taking ¢=0 in (A3.1) and (A3.2). We

study the two dimensional Poinca_ map T obtained from the solutions of (A3.2) which is defined as

follows:

7" : _ --_ Z (A3.3)

(x (0), y (0)) _ (x (2gy), y (297)).

Recall that the Poinca_ map obtained from the unperturbed velocity field has saddle _ints at p _. and

p_ which are cormected to each other by the _ heteroclinic orbits _F,,, 'Fo, and _Ft (see Figure 2.1).

As noted earlier, by symmetry of the, unpemaxtml now qJo remains unbroimn under the external strain.

We use the Melnikov function m determine the behavior of _F. and _t • Since the pemsrbed velocity

field is symmetric about the x-axis, for detinit=ness, we will only draw pictures of the upper half plane

inourdevelo,)mentoftheMelnikovfunction.

The construction of tl_ Metaikov func'don consists of four steps:

1. Develop a paramen'iz_on of the unperturbed hemroclinic orbit in _e Poinca_ se_iom

2. Define a moving coordina[e system along the unperturbed het_roclinic orbit in the Poincare

Se_om

3. Define the distance between W**,t and W==t in the moving coordinam system at points

along the unpemartx_ betemctinic orbit.

4. Utilize Melnikov's rock to develop a computable form for the geometrically defined

distance between W_.t and W'=,t o_ the points along the unperturbed hetemcl_ic orbit.

We begin with Step I.

Step 1: Let q, (t) denote a heteroclini¢ trajectory of the unperturbed velocity field which lies in _P_.
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Then since the unpemu-bed velocity field is not time dependent (i.e., it is autonomous) q. (t - to) is also

a heteroclknic trajectory of the unpertm'bed velocity field which Lies in _F. for any to e R (see Arnold

[1973] for a proof of this fact). Th_ q.( - to), to e R p_vides a parametnzation of _F. where to is

the unique time that it takes for a fluid particle on '_ to flow to q. (0),

Step 2: The vector f'_(q,( - to)) = ( -f2(q,( - to)). f l(q,( - ;o)) is perpendicular to _F, at each point

q_ ( - to) on _F,. Thus varying to will serve to move f _(q, ( - to)) aiong _F, and the distance between

W'._ and W_'_ will be meas'ar_ alongfa(q.( - to)).

Step 3: At ¢- 0, W_ and W s_ intersect f_q.(-to)) transversely at each q.(- to) ¢ _F. (see Arnold

[1982] for a definition of the transversal intersection of two manifolds). The intemections are preserved

under perturbations so that for ¢ sufficiently small Wi,t and W*_,t intersectf*(q.( - to)) transversely in

the points q_ and q_. Thus we define the distance between W_ and Wt, t at the point q.( - to) to be

ddsta,-.ce = Iq_ - q_ I. (A3.4)

See Figure A3.1.

Figure A3.1. The Geometry of the Distance Between w',.z andW'_x .

The problem with this definition of the distance is that is does not lend it.,_Lfto an expression which can

easily be computed without solving explicitly for fluid particle motions of the perturbed velocity field; a

task which would be quite formidable. However foUowing Melnikov [1963], we define the following

"signed" distance mea.rarement

f _(qM( _ to))" (q[ - qat)
d(t¢_ 8) - (A3.5)

llf(q'(-to))II
#

where"."denotestheusualvectordotproduct.Itshouldbe cleatthatby thechoiceofq_ andq_ that

d(to,¢)= 0 ifandonlyifq[ - q_.

Now becauseW_,t andW__evarydiffetermablywithrespecttoparameters(Fenichel[1971],Hirsch,

Pugh,andShub [1977])we canTaylorexpand(A3.5)about¢ = 0 toobtain

fZ'(q,(-to)) "(_-_ t=O- _a-_ t,.O)

a(to, m)= e II f(q,,( - to)) II +° (A3.6)

where we have used the fact that q_ -- qi[.
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The Melmkovfimction, denoted M(to), is defined to be:

_q_[ _ t =o) (A3.7)M(,'O)=f'(q.(- to))' (O-_e-,=o- O_l

and is (up to the normalization factor [] f(q.( - to)) [I-l) the leading order term in the Taylor series

expansion for the distatw,e between WS+,tand W_"_at the point q, ( - to).

Step 4. Melmkov [1963] was able to derive an expression for (A3.7) without expLicidy computing

particle paths of the pe_d velocity field. His procedure consisted of the following steps

a). Prove that the panicle paths of the perturbed velocity field through the points q _' and q[

exist on the time intervals ( - -, 0] and [0, -), respectively.

b). Uskng a) along with the first variational equaaon for solutions through q_ and q[ (i.e.

regular perturbation theory) derive a Linearfirst order ordinary differential equation for the

dine dependent Melm_v function

. Oq)_(t), i_q_(t),

M(t,to) =.f_(q.(t - to))" (__=o _ 1_=o) (AYS)

where q_(t) aria q_(t) are particlepaths of the perturbedvelocity field satisfying

q_(0) = q_ and q_(0) -q_, respectively. TIn_ M(0. to) -M(to).

c). Solve the Linear first order differential equation for M(t, to) and obtain the MeImkov

function by ev'.d_ at t = 0. In the process boundary conditions for the solution at

are imposed which were the mason for needing the existence proof of particle paths on

eemi-infinite brae intervalsasdescribed ina).

For thefullder_itqof thesestepsseeGuekenheimerand Holmes [1983]or Wiggirts[1988].Finally,

oneobtainsthefollowingformfortheMelnilmvfunction.

M(tcO-'f_.[f,(q.(t))g2(q.(t),t +to)-f2(qu(t))gt(q.(t),t +to)? dt (A3.9)

andwe have the followingkey theorem.

Theorem A3.1. Suppose there exists to - i'o such that

1) g('i'o)=O
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aM

2) _o(TO) I0

ThenW'..EandW_'.eintersecttransverselynearq,,(- To).IfM (to)isboundedawayfromzeroforall

:_, men W**x and W_'.t are bounded away fromeach other.

Proof. See GuckenheimeraridHolmes [1983] or Wiggins [1988].

Thus we can determine whether or not WS.z and W_'t intersect without solving for fluid pa.rtici_
motions of the permr_d velocity field.

We now want to point out two propertiesof the Melnikov functionwhich are important.

I. Zero's of M (to) Correspond to Primary Intersection Points

The Melnikov function is a first order measure of the distance between W**.eand W" along the Line

f#q,(- to)). However. it is possible that W_ and W_W.emay intersect f_(q,(- to)) many times as

depicted m Figure A3.2. The question arises of which two points on w**.emf_q_(-rod and

W=-.__ f_(q,(- rod is the distance being measured. The answer to this question comes from the

validityoftheregularperturbationtheorywhichwasusedto obtaina computableex_ression'forthe

Melmkovfunction(step4).The factthatwe canapproximatefluidparticlemotionsoftheperturbed

velocityfieldumformlyonlyon semi-infinitetimeintervalscoupledwiththegeometryofthetime

dependent Meinikov function implies that the Melniimv function is a measunnnent between points in

W$.t and W_".talong f_(q,( - to)) which ale "closest" to P �P-_, respectively, in the seine of

,.lapsed time of motion along W',._ and W_'_. These points are denoted _'[ and _ in Figure A3.2.

From definition 5.1, it follows that _'_ and _'_ are primary intersection points. For more details see

Wiggins [1988].

FigureA3.2.IntersectionoftheManifol_ with fffq,,(-to))

2.TheRelativeDiaplacementofWS+_tandW=_.t

Sincetransportinthemixingregion isgoverned byW*.,tandW'__titisusefultoknow their relative

positionsand,becausetheMetnikovfunctionisa signeddistancemeasurementitcontainsthis

information.FromthedefinitionofthedistancebetweenWs,tandW_'.tgivenin(A3.5),itissimpleto

showthatthegeometryofthemanifoldsshowninFigure(A3.3)holds.FortheOVP flowtheMetnikov

functionisgivcnbyequation4.3andFigun_s4.3and4.4confirmtherelationbetweentheMeinikov

functionandtherelativepositionsofthestableandunstablemanifoldsforthisflow.
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Figure A3.3. The Melnikov Function and the Relative Orientations of the Manifolds.

3. Per_oHctty of M (to)

The Melnikov function is a periodic fimction of to having the same period as the external strain field

(see Gucl_nlaeimer and Holmes [1983]). This is an indication that one heteroctinic mint implies the

existence of a countable infinity of hemroclinic points.

Appendix4: The MelnikovFunctionand Lobe Motion

We now givetheproofofTheon.'m5.I whichisrestatedbelow:

Theorem 5.1. Suppos_ M (to) has 2n simple zeros inone period '_. Then

1) T(Ei) = g,_

2) T(D, ) = Di,_,

Proof: From Appendix 3, simple zeros of the Melnikov function correspond to pip's. We denote the 2n

zeros of M (to) in one period as follows:

q: < qP < q: l... < qF `q_,,_-I

wherethenotationand ordering(s_ definition5.3)a_ chosensuchthatEi_,isformedby q:._and

qp_ andD,.,,,isformedby qiD__andqf_ •k = I......n-l.

Now by orientationpn_servationpip'smaintaintheirr_lativeorderingalongW_".tunderiterationby

T and becausetlmvelocityfield(andhencetheMelnikovfunction)isperiodicintimewithperiod_ we

have:

r(q:)=qL

and

:t'(q,a)= qP.

Then by definitionitfollowsthat

T(Ei)= E,

and
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?'(Di) = Di_

Appendix 5-Some Properties of PoincardMaps

In this appendix we wilt point out some general pmperdes of Poincar_ maps which have fluid

dynamicalconsequencesand arenot usuallydiscussed in standardtexts.

I. AreaPreservation.A consequenceoftheconservationofmassisthatthePoincar_map preserves
&rea.

2. OrientationPreservation.I:)oincar_mapsobtainedbydiscretelysamplingtrajectoriesofordinary

differentialequanonshave the propertyof preservingtheorientationof areaelements.

Analytically,thismeansthatthedeterminantoftheJacobianof",hemap isstrictlypositiveover

itsdomainofdefinition(note:byareapreservationthedeterminantoftheJ'acobianisidentically

one).Geomemcally,orientationpreservationcanbedescribedasfollows.Considera simply

connectedareaelementD withthreepointsdenoteda,b,andcontheboundaryofD. Suppose

thatasonewalksalongtheboundaryofD ina counterclockwisesense(i.e.withtheleftarm

pointedtowardtheinteriorofD)beginningatasothatnextb andthenc isencountered.Now let

T§(D)--D °withT_(a)= a ",T_(b)= b ",andT_(c)= c ".T§ isorientationpreservingifas

onewalksalongtheboundaryofD" ina counterclockwisesensestarting_ta"thennext/7"and

thenc"isencountered.Thisimpliesthattheinteriorofa closedcurveismappedtotheinterior

ofitsimage.SeeFigureA5.I,foraniiluswationofthegeometryoforientationpreservation.

FigureAS.I.OrientationPreservationofTi,

3. Var_n oftheCross-zectwn_. Noticefrom(3.2)thatthePoincat_map dependsonthephase

ofthestrain-ramfield.Thequestionthenarisesastohow thePoincanfmap changesasthephase

ofthefieldisvaried?Fortunately,thereisnoqualitativedifferenceinanyofthesemaps.The

tectmical term is that the di_enmt maps ate differentmbly equLvalent (see Irwin [1980]) which

means that given any two Poinc,a_ maps obtained by fixing two different phases of the st_rain.rate

field there exists a differentiablechange of coordinates which transformsone map into the other.

In pardcular,the nature of the stability of a fluid particle trajectoryis the same for each Poincar_

map. Since there is no qualitativedifference in the Poinca_fmaps we will take 0 -- 0. This choice

has ",headvantage that the Poinca_ map on this cross.section is symmetric about the y-axis with

nine reversed. We refer to the associatedPoinca_ map as T.

4. FlowDynamics viathePoincare'M_.Instudyingthemotionoffluidparticlestheconceptsof

streamlines,pazhlines,andstmaklinesareverynatural.However,asmentionedearlier,theiruse

inthestudyofunsteadyflowsislimitedsincetheirrelationshiptosuchdynamicalphenomenaas

mixingandtransportpropertiesmay beunclear(Omno [1988]).Infact,heseconceptsmay be

misleading.Forexample,Hama[1962]showedthatstrealdinesandpathlinesiaa time-dependent
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laminarflowmay lookturbu_nt.Inthecontextofthel)o_ map,thedynamicalevo!ut_onof

_uidparnclesisexpressedintermsoftheorbitsofthePoincar_map. The orbitofa fluidparticle

isdefinedas follows:Let p be a fluidparticle,thentheorbitof p underT isthebi-mfimte

sequenceofpointsgivenby:

I................,.,>;.....
L .J

where

tafactors

T "_(p) = T(T("(T(p))'")).
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FIGURE CAPTIONS

Figure2. I Streamlines of the Unpertm'bed Flow.

Figure4. I Resonance Bands and _[ Tori.

Hgure4.2 The Homoclinic Tangle in ,he Mixing Region.

Figure4.3 Graph of F (7).

Figure4.4 Numerical Computations of the Invanant Manifolds for Various Param _ Values,

Unstable Manifold, - .... Stable Manifold.

Figure5.1 ql. qz. q3. q4arepip's, qsisnotapip. Ll. Lz. L3arethelobeswithLt <Lz<L3.

Figure5.2 The E, and Di.

Figure5.3 Geometry of the Area of the Lobes.

Figure5.4 Comparison Between Theoretical and Numerical Calculations of Lobe Areas,- F (y),

*, ¢ ---0.01, h---0.05. o, ¢ ---0.1.

Figure5.5 The Geometry of Region A, a) unperturbed ftow b) perturbed flow.

Figure6.1 a) e3=_TZE _D) b) e3-'l.t(E _ T"2D).

Figure6.2 Geometry of E _ 7" _"_ID for Various Values of k. a) y=0.5, b) y=C.9.

Figure6.3 Comparison of the Brute Force Calculation and the Reduced Calculation for y=0.5,

• brute force calculation with mesh = 0.005,

[] reduced calculation with mesh - 0.005,

o brute forr.e calculation with mesh - 0.0075.

Figure6.4 _ Motionof a GeneralInitialShapeB, a) t=0 b) t--2rr'f c) t_.

Hgure6.5 How visualization of a turbulent vortex nng. Glezer and Coles [1987].

Figure6.6 The et, a) 7=0.5, log-linear plot b) y=0.9, log linear plot c) y_.5, log-log plot d) 7=0.9,

log-log plot.

Figure6.7 The at, a) y_.3, 0.5, 0.7 b) y_.9, 1.I c) _1.7, 1.9 d) "1=0.5, log-linear plot e) "f=0.5.

log-log plot f) "p=0.9,log-linear plot g) y=0.9, log-log plot.

Figlare6.8 The Cole Area: t r_!t(A ), 1_r,./la.(A ), �upperand lower bounds on r,/_(A )

Figure6.9 The Unstable Manifold for y=0.3.
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Figun_6.10 The escapemap fora)"_-0.5b)7,,I.38c)"I"_).5withtheunstablem_.._foldplot'a_1m

wl_te.TI_ 6"ddalconditionsa_ coloredaccordingto their r_idenceume: ,_ coloris

grax_dfromblu¢viagreentoredwithresidencetimefrom0 to50 cycles.

Fig,un_7i The GeometryoftheHolseshoeMap

Figu_8.I a)-_ foranIrtitialConditioninA-C. b)Ln% forth_Sam,"Ir.iti_Condition.

Figu_8.2 The To_ Stretch_.

Fign_n_8.3 The Tota.lStretr,.hAveragedOver a Sampleof [nitizlConditionsWith theSarncEscape

Cycle.

Fi_n_reA3.I The GeometryoftheDistanceBetweenW_ andW_'_.

Figu_A3.2 Inmrsect_on of tim Manifolds with f _(q,, (- to))

FiguceA3.3 The MelnikovFunctionandtheRelativeOrientationsoftheManifolds.

Figure/uS.I OrientationPreservationofTi.
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TRANSPORT, MIXING AND STRETCHING IN A CHAOTIC STOKES FLOW:
THE TWOoROLL MILL

Paper published in the Proceedings of the Third Joint ASCE/ASME Mechanics Con-
f'e:ence in La Jolla, CA, July 9-12, 1989. Editor: K.Ghia.

Tasso J. Kaper and Stephen Wiggins
Applied Ma_h and Apphed Mechanics Departments

Caltech, Pasadena, CA 91125

Abstract We present the outline and prehmmary results of an analytical and numerical
study of transport, mizing, and stretching m a chaot:c Stokes' flow in a two.roll mill
apparatus. We use the theory o/dynam2cal _ysterr_ to descr:be the rich behav:or and
structure ezh=bited by these flows. The ma:n features are the homoclinsc tangle wh=ch
functzons as the backbone of the chaotic m2zmg region, the Smale horseshoe, and the :sland
cha;ns, We then use our deta;led knowledge of these structures to develop a theory of
transport and stretching of fluid in the chaotzc reg:me. In particular, we show how a
speczfic set of tools for adiabat:c chaos- the adiabatic Meln:kov function [4,5,6,I9], lobe
area and fluz computations [6/, and the adiabatic switching method [7]- is ideally suited to
develop this theory of transport, m:zm 9, and stretching :n time-dependent two.dimens:onal
Stokes 'flows.

1.Introduction

Chaotic advection or lagrangian turbulence in two-dimensional time-periodic low
Reynoldsnumber fluidmechanicsproblems hasbeenobservedexperimentallyand numeri-
cally11._,3,8,9,16].Fader slowtimemodulationofa steadystateconfigurationtheseflows
simultaneouslyexhibitchaoticparticlepathsandlargescalestructures[1,2,3,8,9,16].These
featuresincludehomoclinictangles[8],Smale horseshoeswiththeirattendantchaoticdy-
namics[8,!6],islandchains[1,2,3,8.9,16].and whorlsand tendrils[1,2,3].

The theoryofdynamicalsystemshas beenusedtoexplainsome ofthesephenomena.
Thisisbecausetime-dependenttwo-dimensionalfluidmechanicsproblemscan,depending
on thestirringprotocol,be treatedeitherasone degreeoffreedomHamiltoniansystems

[3,8,9,16] or as nonintegrablearea-preserving maps [1,2,!6].
The field of time-dependent, two-dimensional Stokes flows remains largely unexplored,

however.Inadditionto developingthemathematicaldescriptionoftheseflowswithinthe
frameworkofthequasisteadyStokes'approximation,therearemany open questionsabout
thetransportand mixingoffluidparticles,and about thestretchingofLineelementsin
theseflows.Forexample,what isthesizeofthemixingzone? Giventhatone can define
differentregionswithinthemixingzone,what isthe rateoftransportoffluidintoand
out oftheseregions?What arethecharacteristicsoftheresidencetimedistributionin
eachoftheseregions?At what ratemust theflowfieldbemodulatedtoachievethemost
efficientmixingand themost efficientstretchingofa linesegmentoftracerparticles?We
emphasizethatthisisjusta partiallist.

Furthermorethedynamicalsystems'_ools[4.5.6,7,19]specifictotime-periodic,two-
dimensionalStokes'flowshavenot beenappliedtoany oftheseproblems,exceptina brief
talkon theeccentricjournalbearingproblemby thefirstauthor[8].These toolsinclude
theadiabaticMelnikovfunction[4,5,6,19],actionintegr',dsforfluxand lobearea[6],as
wellastheadiabaticswitchingmethod [7].
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The purpose of this paper is twofold. First we demonstrate why time-dependent,
two-dimensionai Stokes' flows constitute adiabatic dynamical systems. Second we show
how detailed knowledge of both the structures in the fluid and the theory of adiabatic
dynamical systems can be used to _lswer some of the questions asked above. The first
part is valid for flows with general time dependence and is discussed in section 2. The
second part focuses specifically on continuously modulated time-periodic Stokes' flows in
the two-roll mill apparatus and occupies the remainder of the paper. Despite this narrow
focus in the second part, however, our results are applicable to othe_ two-dimensional
Stokes' flows which are periodic or quasipenodic in time.

This paper is split into six sections. As mentioned before, we present the discussion,
comprising the first part of this paper, of why time-dependent, two-dimensional Stokes'
flows are adiabatic dynamical systems in section 2. In section 3 we present the steady state
flows in the corotating two-roU mill device. The stirring protocols for the time-periodic
flows we study are detailed in section 4. In section 5 we use dynamical systems tools to
describe the rich dynamics and structures present in the time-pe":.odic flows. In section
6 we show how a detailed knowledge of this rich dynamics leads to specific formulaz for
computing some of the quantities enumerated above. Vv'ereport on our preliminary results
concermng the location and quantitative measurements of the size of the mixing zone for
two different stirring protocols. Finally, in the conclusion we discuss the relation between
the flow fields generated by continuous in time protocols and those generated by blinking
protocols.

We remark that this extended abstract constitutes a brief report of our wo, k to date.
We are planning a more complete paper for later publication. We also remark that we are
also in the preliminary stages of cooperating on a joint analytical and experimental effort
to study this problem with Dr. L.G. Leal in the chemical engineering department at UC
Santa Barbara.

2.Time-Dependent 2-D Stokes' Flows as Adiabatic Dynamical Systems

Inthissectionwe demonstratewhy a time-dependent,two-dimensionalStokes'flow
constitutesan adiabaticdynamicalsystem.Firstwe discusswhat an adiabaticdynamical
systemis,and thenwe presentthetwo main argumentsjustifyingtheabovestatement.

Forthepurposesofthispaperan adiabaticdynamicalsystemisa Hamiltoniansystem
whichdependscontinuouslyand periodicatlyon a parameterwhichvariesslowlyintime.
The HamiltonianforthesesystemsisH = H(p,q;A = et),wherep and q arecanonically
conjugatevariablescoordinatizinga two-dimensionalsymplecticmanifold,A isthetime-
dependentparameter,and e¢:I.The equationsofmotionare

OH (I),

i .-._.

We remark at the outset that similar results exist for flows which are quasiperiodic and
aperiodic in time [6] although we do not discuss these in this paper.

During the time evolution of (1), through one period of the modulation (9(1) changes
can occur in the vector field. These (9(1) chang:s include (9(1) changes in the position
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of a hyperbolic orbit, 0(i) motions of tlle stable and unstable ma_folds of a hyperboSc
orbit, and 0(I) changes m the areas m phase space of regions which are occupied by a
given type of orbit.

Examples in which the position of _l_e llyperbolic orbit of (1)_ varies over an (.9(1)
distance as ,\ is changed slowly in time include: the corotating eccentric journal bearing
problem when the ratio of the angular velocities of the shaft and casing is greater than a
crmcal ratio which depends on the geometD', the pendulum with Hamiltonian,//(p, q, A) =

_- - costq -_ A), and as we shall shortly see the corotating two-roll mill, as well as many2

other examples from particle accelerators, celestial mechanics, and plasma-confinement
systems.

The first reason that time-dependent two-dimensional Stokes' flows are adiabatic dy-
namical systems is that they are Hamiltonian systems which depend on a paxa.meter which
changes slowly and continuously in time. These flows are described by the Han'filtonian
vector field

cO//

OH _,
) = --gT-(z, _;,_) (-)

where A is the parameter which vaxies slowly in time, // is the Ha.rniltonian (streaxnfunc-
tion), and the two spatial coordinates z and y are the canonically conjugate variables.

Time dependent Stokes' flows must satisfy R_ (',_.)_7 = _ _ 1, where r is the time-scale
of the modulation and U and L are the characteristic velocity and length scale, respec-
tively, of the flow. U and L depend on the geometry of the flow field at hand. Hence if
the parameter A, such as the ra=io of the angular velocities of the rollers in the two-roll
mill device or the ratio of the shaft a,-.d casing angular velocities in the eccentric journal
bearing problem, is modulated in time. this modulation must be done continuously and
slowly enough so that the system s_,ays within the quasi-steady Stokes' approximation,
r >> L_'/v. Thu_ from a purely kinematical point of view once one accepts the validity
of the quasisteady Stokes' approximation for describing these flows adiabatic dynamical
system theory should be used to study them.

The second reason adiabatic dynamical systems theory sho_dd be used is that large
scale changes can occur in the flow field during the time modulation. For example, the
saddle point may move a distance as large as the chazacteristic length scale of the problem
- an (.9(1) distance - during one'period of the modulation. If this happens, as it will under
the second of our two stirring protocols in the two-roll mill device, then the _table and
unstable manifolds of this stagnation point which form the homocli_ ic tangle and the Smale
horseshoe also move an order one distance during the modulation. As we discussed above.
adiabatic dynamical systems theory is ideally suited to this type of slow, large amplitude
modulation.

We conclude this section by making two remarks. First, although we do not pur-
sue it in this paper, all of the above analysis applies to Stokes' flows with general time-
dependence, not just to those flows which are periodic in time, as long as one stays in
the quasisteady Stokes' regime. This is because many of the techniques which exist for
adiabatic systems apply to systems with general time dependence [4,6,13,19].

Secondly, regular Melnikov function theory will not be of much use for Stokes' flows.
This is because regular Meinikov theory applies only to autonomous Hamiltonian system_
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with small amplitude. O(1) frequency forcing. Hence it can orfly be used for flows which
undergo small amplitude chan_:es during: the modulation. Although som_ chaot.ic advection
still occurs in this case it is-not nearly as extensive as when the flow undergoes large
a.mplitude changes. Furthermore the requirement that the forcing be of O(1) frequcncy in
order for the theory to apply takes one out of the quasi-steady Stokes' approximation. Thus
the use of regular Melnikov theory cannot be .lusnfied from a fluid mechanical standpoint.

3.Seady State Flow Geometry

In this section, we study the steady state Stokes' flow generated ext,-;. ,' c cuLo-
taring rollers of equal radii. The fluid has no velocity parallel to the axis ,. rollers.
As a result, the flow is two-dimensional and the problem can be studied as an integrable
one degree of freedom Hamiltonian system treating the streamftmction as a Hamiltonian
and the two Cartesian spatial coordinates as canonically conjugate coordinates. Fluid is
constrained to move on streamlines, and the dynamics of the flow is completely determined
by the streamfunction.

We formulate the steady state problem using the natural bipolar coordinate system
with a and 3 as the orthogonal coordinates. See figure 1 for the geometry of this coordinate
system.

Figure 1.
Bipolar Coordinate System

A _ B are the points c_= ±_

The equations of motion for the steady state are:

O_ f_L)
a = h(a, _)5-5(_. 3; 5--_R (3)

with no slip boundary conditions on the rollers and zero velocity at infinity, where flL and
f_R are the constant angular velocities of the left and right rollers, respectively, and h(a, 3)
is the metric coefficient in the bipolar coordinate system. Figure 2 shows the streamline
pattern. We remark that a p_ition-dependent change of the time variable can make (3)
Hamiltoaian in bipolar coordinates.

• Figure 2.
Steady State for flL = fla.

The flow field has one saddle stagnation point a/ong, the line of centers of the rollers
and two stagnation streamlines, shown in figure 2, terrmnating on the saddle stagnation
point. The saddle point is a hyperbolic fixed point of the autonomous Hamiltonian vector
field (3). and the two stagnation streamlines are orbits homoclinic to the hyperbolic fixed
point. These homoclinic orbits are also called separatrices. In fact, each homoclinic orbit is
the coincidence of one branch of each of the stable and unstable manifolds of the hyperbolic
fixed point. We observe that ,'.he saddle stagnation point is located at the midpoint of the
line of centers of the rollers, when flt_ = fin, and that the areas enclosed by the stagnation

streamlines depend on the value of _.. See figure 3.
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The s_rea,m/vnction used in (3) wiLl be derived in a forthcoming paper [17]. It is a
_uLu_un of _:ze uw_amumc equ,-_.ionv_4'_= 0 expressedin bipolarcoordinatessatisfying
the boundary couditonsstatedabove. Vv'eglveitforthe speczalcasein which f_/.= fla
and then discussthe genera/case.

\\'hen f_L =- .Qg, we fmd

QL 1 rr_=_,
J_,e.3: ) = h_e.3) -"= (4)

_-A'(cosbc_--cos3)Iog(¢oshc*- cosd) + Dcoshc*],

where v,,(c,)= .4,cosh((n + I)c,)_B.,cosh(:n - l)c_).Because the coei_cientsin ,[,,(c_)
decay rapidlywlth n.one can truncatethe seriesafter_ fudtenumber of terms.Then the
co,;_cientscan deterrmned by _mposmg the followingfour conditions:symmetry condi-
tions,the no slipboundaxy cona_tlonon the "ers.the conditionofno normal velocityat
thesurfaceof therollers,and the ,_ondmon ofzerovelocityat inftmty.The streamfunction
forthesteady flowwhen the corott,tmg rollershave unequal angular-velocitiesisobtained
bv adding a counter'rotatingi:iowof the appropriatestrengthto (4). We have obtained
ti_esolut:onforthe purelycounterrotatir.gcaseusing the method of matched asymptotic
expanszonsand willdiscussitin [17I.

4.Stirring Protocols

In this section we focus on the time-periodic flows generated in the two-roll mill device
by two sti.-'ring protocols. In the first, the angular velocities of the rollers are modulated
continuouslyand periodicallyin _,imesuch thatat e',eryinstantiu time t,heirmagmtudes
axe equal, _m(t) = _mt). In the sec'r,nd, the angulm" velocities are again modulated
cominuously and periodically but now such _hat they axe out of phase. See figure 3.

For both protocolswe requirethatthe saddlestagnationpointbe presentat alltimes
during the modulation in order to use the resultsoi'[4.5,6,7,19].This isequivalentto

requiring that the streamline pattern for every v_due of the p_ameter i = _ taken on

during the modulation must have a saddle stagnation point on the line of centers between
the two rollers. It means that the actgula.r velocities must maintain the same sign as they
have initially. We also require of both protocols that the modulation is done slowly and

,_I ,'" ' ( -)co_ztinuouslyso thatone staysin theStokes hrmt of _ = where fl = 2 '

theaverageof the angularvelocitiesof the two rollers,R = _r = RR, the radiio_ the left
and mght rollers,and D isthe distancebetween the centersof the rollers.

Figure 3.
Flrlt and Second Stirring Protocols

We will use (4) when studying the time-periodic flow generated by the first stirring
protocol because f/r.(t) = f/a(t)for all t. The strearnfunction vzlid for the general coro-
ta.ting case will be used in studying the flow generated by the second protocol.

For both protocols. Smile horseshoe chaos is present and the dynamics of the flow in
the rmxing zone is governed by the homoclinic tangles, In the next section we will discuss
the rich dynamics of' these time periodic flows. We emphasize here that one will not see a

sequence of smooth stagnation streamlines, one corresponding to each value of _ taken
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on during the modulation. Even if one did _ot hnow anything about dynamica/systems
theory one could predict this resuh froLu the :ucompressibility of the fluid.

$.Geometry of the Time-Periodic Flow

In this section we describe the wealth of ue_v behavior found when the ansulm" veloc-
ities of the rollers ,_undergolarge amplitude, slow and periodic in time modulations - -
both of the stirring protocols discussed above. The main result is that a mixin_
created in which chaotic advection occurs, large scale structures arise, and stret'c..:....
line elements is exponential.

The application of either of our two stirring protocols caus(l the stagnation stre_a-_/lines
to break. The stable and unstable manifolds of the hyperbolic orbit intersect each other

shown in figure 4 and form homoclinic tangles 8_n:iSmale horseshoes [4,5,1_].
Periodicity a/lows us to simplify the t. msport analysis via the u_ of a Poincare map,

T. The Poincare map _sociates points from D with their first retvrn to D, where D is
the two-dimer_iona/fluid domain. Tha is T • (z(t), y(t)) _ (z(t + r),!j(t + r)) for every

(z,_) E D. We r-mark that the period of the modulat_oz:. 7", is proportionai to _ where
e is the frequency of the modulation. Thus as e -- 0 _"-- oo and the simulation of these
systems, both experimental and numerica/, becomes more and more tim-. consuming.

On the dommn of the Poincare map the pieces of the broken sta_,,tion strearnlines
form homoclimc tangles. These broken stagnation strem'alines are the unstable manifolds
of the sadd/e point in the fluid and from a fluid mechanical point of view are stre_lines.
The saddle point also has stable m_'fifolds (these one can see by simply reversing the flow).
Together the stable and unstab_ manifolds of the saddle point form the homoclinic t_gles
that are the backbone ot the main mixing zone. We describe the mixing process in detail
below in discussing figure 6.

On the Poinc&e section shown in figure 4. four distinct regions, defined by pieces of
the stable and un.ltable m,_-ifolds of the hyperbolic fixed point present therf_elves.

Figure
.4

"" ' }or Second ProtocolDomain of t'olncare _vLap
Mixing Zone is Region III.

The two annular regions, I and II, adjaceut to the rolle_, corresponu to the area bounded |by Arnold to=i [14,i2] these are the tori whi.,:h persist r.nder the modulation just as the so-
ca/led I{AM ton are the tori which persist nuder small-amplitude periodic perturbations
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of autonomous Hamiltonians. The flow appears to be smooth in most of these regions
..... _^-:- the :csonrnccb_nds ": " : "mar, i,cs_ect expenmentanv by m-called isiand chaans.
Chaotic advecnon is also azsoclated _,tb. these resonance bands. They are located near
the broken separatnx because the periodic orbits whose period is at least as large as that
of :he modulanon lie near the separatr:x. Flmd in regions I and II cannot escape by
ad:'ect:on but only by the much slower process of molecular diffusion. Since the time scale
for d:ffusion :s .much !onger than that of the chaotic advection, the fluid in these two reBions
is caiied :rapped Arnoid tori also ex:st in :eo:on III adjacent to the container wails. Thus,
reg:on III :s also a rag:on m which Huld is trapped.

Finail_, region IV. the regmn compiementaxy to the other three, is the n_ain mixing
region. Its backbone is the homociinic tangle. "_,:is is the region, besides the :siand chaans,
m wh:ch D_tlcle paths are chaotic, in which mixing occurs, and in which material hnes
stretch exponentially. We present results about its size and the rate of transport of fluid
in this rag:on in the last section of thi; paper. Region IV has been en!_ged for clarltv m
figure 4. The region wdl be narrower than shown, and the lobes, defined shortly, shown
wdl be narrower and longer than i', shown [6J. The region can be split into three parts
corresponding to the parts reside and outside of the solid black lines which are also ca.Iied
pseudo-sepaxatr:ces.

We define a lobe as follows. Let 32 denote the saddle point in the flow and II,'c'(.f)
and IV s: A') one branch of each of it_ stable and unstable manifolds, For definiteness, we

,a,,e the branches emanating to the nght of the saddle point, though the concept applies
equally well to the branches emanating to the left. Let P denote a point of intersectmn of

! V"IVS,'X ar.d II,'c'l,g) _nd WSP and H,'UP denote the segments ot _l"S(x) aa_d Wc'(., ),
respectively, connecting P a_d X. \Ve say that P is a primary intersection point (pip) if

IVsP and II,'C'P intersect only in P. Now take two pips, P and Q, such that there are no
other pips on the segments of Ws(X) and We(X) connecting them. The regmn bounded

by the pieces of ws(x) and We'(X) connecting P and Q is defined as a lobe. See figure
5.

Figure 5. i Lobe

.Now we discuss the mixing in these flows and the mechanism underlying it. One will
see fa,uad particles transported between distinct regions defined by pieces of these broken
streamlines. In addition tracer line elements in the fluid will stretch exponentially.

Tie sequence of pictures in figure 6 shows how an initial distribution of tracer particles
evolves after the first two periods of the modul.,_lon.

Figure 6.
Evolution of Tracer Particles

Illustrating Transport of Lobes
.4.. Poincaxe map with initial distribution of tracer. B. Poincare map after one period. C.
Poincare map after two periods.

In each period of the modulation a lobe of fluid ',eaves region III1 and enters re{ica III2 and
vice versa. The same is happening between regmns III1 and III3, not shown in ngure 6. (We
remark that the system can be said to have a turnstile [18] and the two lobes of fluid which
change regmns in one period of the modulation are referred to _ turnstile lobes). The
picture gets more complicated after each subsequent period. Note that incompressibility
guarantees that equal amounts of fluid enter and leave the regions bounded by pseudo-
separacrices in each period. Thus the homoclimc tangle is the backbonc of the mixing
zone, and the lobe dynamics associated to the tangle governs the fluid motion there.
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Quantitative measurements of :ranspo:: aa_.dstretc'hing in region i'V can now be made
L:_e' _'d we discu_._ this in detail in the next secnon._iven quantitative knowledge of ' ,_,.:_.

As we remarked before adiaoatic dynarmca, system theory [4.5,6,19] is ideally suited to
systems "n which the flow field undergoes O/1_ amplitude changes. Finally we remark that
:he prc_blem :s nomntegrable !4,5.i9; and. m the absence of molecular chffusion, reversible.

Before concluding this section, we dlscuss a second approach based on the adiabatic
sw;tci_ng me:nod :ha:we are ta.k:n_" to a:r:ve.at these quantitative measu.rements. The
ad_abat:c sw_tca:zg method represents _ 'a:ghiy developed approximatmn scheme to deter-

.m:ne whet!:er or not a par::c',e cros.-,es "'._,ep.-eudo-sep_atnx dunng any gl','en period of
,ze modulat:on Th_s is a._m :o the role :ire wh_=ker or _eparatrix map {lo] plays for vector
.a,e',ds wh:ch are trine-dependent Cma'.', <_:pht'=de perturbatmns of autonomous Hamihc.,l-
ans. The adiabanc sw:tchmg method has ::or been applied in the context of low Reynolds
number _uad mech&mcs and represen:s a potennaily powerful tool to measure the transport
qua.nnties we seek. Furthermore. results from tl:is method have not been compared w_th
results obtained from an exact dynaamcs-based technique such _ the one we are using in
the pr:nc:pal pa.-tofour study.

6.Results from Applying Adiabatic Tools

In this final section we state our results for the areas of the mixing zone and of a lobe
and also the give the b_ic form_ to be used in studying the transport in the mixing
reg',on.

The size of the mare rraxing zone under the first protocol is given to a certain ord_-
of approxnnation by the area between the :rammum and maximum frozen separatr
!12.13,61, A,. See figure 7. In addition the area of a lobe in (2) is given to leading or_.er

16].
Frozen sepazatnces can be understood a__follows. For any instantaneous value of the

angula.r ve!oc:ties of the rollers one has a cor:esponding steady state flow pattern. This
flow field has a stagnation streamline which is called a frozen separatrix. VCe emphasize
that frozen separatnces are never realized by the flow of (2) because the periodic mod-
ulanon of the roller angula: velocities bre_.ks the st,,gnation streamline. Instead frozen
separatrices serve merely m a convenient ficnon for aiding in determining the area of the
mixing zone and that of a lobe. In part:cular, during the modulation, the sequence of
areas enclosed by frozen separatrices, one area for e_ch iDstantaneous steady state flow
pattern, _s an altematingly expanding and contracting sequence. Thus the area enclosed
by the frozen separatrix oscillates between a minimum and maximum area [12,13,{5]. The
d:lfference between the minimum, and maximum are_ is exactly A,. We remark that frozen
separatrices are distract from the pseudo-sep_atrices formed by pief'eo of the stable and
unstable mamfolds.

Figure ?.Frozen Separatrices for First Protocol

The shaded area ,_hown in figure 7 is then the area between the mirfimum and maximum
frozen separatrices and to leading order gives the area of the mixing zone [6]. This result
_s valid to c0(e) and thus gives a good approxnnation to the area of the mixing zone for
slowly moctulated flows.

Under the second protocol the area of the main mixing zone can also be determined
to leading order from two frozen separatrices. The area can be obtained directly from the
si_aded region in figTare 8. We refer the reader to [6].

Figure 8.
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Frozen SeparatricesforSecond Protocol

To obtam quantitativereformationabout theI ,,ooes for both protocols, we _ely pri-
mar:ivon :headiabat:cMelmkov function"'" '".:,o,6,1.). It is g_vea bv

' f .\'_ +,

'" _' = j__ ' c)z aydA @g0_"_ ilq°_(t))dt'(5)

whereqj"t)representstheseparatnxforthesystemwiththeparameterA fixedatA :

.',/.._,;k, :s. up to a normalization, the first t_'r:n of the Taylor expansion of the distance
between :he stable and unstable man:foids of :he hyperbolic orbit as a function of the
t_me of :a--'ghtalong the sepaxatr:x of the steady state flow. Integrating it between two
zeroes, wi,_ch correspor_d to mtesect:on point_ of those manifolds, gives the area of a lobe
6', and this quantity is equal to leading order to .4, F61. We remark here that :his result
c£nnot be proven d'irectly from the Po::-care map of' (he flow but instead relies entirely
on the cormection between the theory" of action in classical mechanics and the adiabanc
Xlel'n:kov theory 16].

Now we mention only one of the transport forrnul_ we need. Given an initially
uruform distribution of tracer fluid in region 1. the amount of fluid which leaves this region
after n periods is given by

a.=_tD _)-_="-I ,DI_T_E_2-_=0 _t ), _6)

where , gives the area of the lobe [1O.ll]. The lobes E la, D 12, .. aremarked in figure 6.
This formula only requires knowledge of the mtersections of all forward iterates of one of
the two turnsnie lobes with the second turnstile lobe. This is simplifies the numerical work
except that one must still integrate over long time intervals because the return time of the
Pomcare map ,s proportional to _.

We have additional formula, given the initial distribution of tracer particles in the
fluid, to determine the amount of tracer fluid in each of the three regions after the first
several periods i)0.11]. Furthermore, we have extended these formulas so that we can
compute the rates of multiple region changes. For example, if some of the tracer fluid
iratially in region 1 flows into region 2 during the k-th period, we can compute the amount
of it which will reenter region 1 during the (k -,- n)-th period for any u. These are based
in part on the same simplifying idea used in the derivation of formulas such as (6) and a
detailed understanding of Birkh'off signatures.

Finally, we remark that using the results from the above transport computations we
can establish residence time clistributions for each of the regions, or even of subregions,
in the flow. This entails obtalnin2; statmtics from the above t,'ansport calculations and
,ieter;r, mlag the amount of tracer fluid in a given region a. a function of time.

7. Conclusion

We have presented the outline ofour transport, mixing, and stretching _tudy in chaotic
Stokes' flows which is based on the structures found in these flows and on the ideas of
adiabatic dynamical systems. We have given aa_a.lytic formulas for the area of the mixing
•-one, for the area of a lobe, and for the evolution of a given distribution of tracer particles.
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We now make a few comments about extension of our results. The technique behind
our mixing zone size result is valid for con'.muous, periodic stirring protocols other than
the ones we study [6].

In particular suppose one takes a sequence of protocols, for each of which f_t and _a
are 1S0 degrees out of phase, which limit ou a square wave (here we are not concerned
about maintaining the quasisteady approximation). For each continuous protocol in this
sequence, our technique gives the size of tile mixing zone in the flow. Thus. we have a
sequence of mixing zone s_zes.

Now the limit of our protocol sequence is called the blinking or alternating protocol.
Thus the question arises as to wheth_.r the limit obtained above is the area of the mixing
zone in the blinking two-roll mill. Blinking protocols have been studied in several flows,
however the area of mixed fluid has only been determined numerically. The present idea
may yield an analytical result. In general the relationship between continuous protocols
arid discontinuous ones deserves further exploration, certainly since a blinking type protocol
is easmr to achieve experimentally.

Acknowledgement T.K. would like to thank Dr.L.G.Leal for his _p.ddance and inspiration
during the process of finding th*. streamfunctions for both the corotating and counterro-
taring two-roll mill. One of us. T.IC. acknowledges partial financial support from the
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Figure _ Evolution of an initial ditribution of tracer particles.
The mechanism for _ranspor_ is the lobe dynamics of the

homoclinic tangle.
A shows the initial distribution.

B shows the Poincare map one pericd of the flow later
C shows the Poincare map after two periods of the evolution.

A_ter each period one sees thau a lobe of fluid leaves region _I:A
and enters region IIIC and vice versa.

The same is happening between regions IIIA and IIIB.
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Turbulence effects during evaporation of drops in
clusters
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_.bstrac(--_ _.',_c_oI Jroplete',aporat_onm clustersandtheexchangeprocessesbetv,eentheclusterand
'_e_...=};'_J)e,u:r,_undln_ttarepresentedThlsmodel_sde'.elopedforuseasa _ubsalemodelm
,_._.u.JtJons:1 ,Pra_,e',aporatlon and combushonand thusdescribesonl_,global Featuresof,luster
heha',_orThe __aspressureintheclusterremainsconstantduring¢,,aporat_on,and...isa resultthe '.olume

, .r r_e c:u._ter and the crop number densn', ms,de Ih¢ .cluster '..Jr', Tv.o turbulence models are cunszdered

Tae ..trst one Jescrzbes ,:luster ¢',aporatlon m surroundings initially de'.o_d of turbulence and turbulence

_s ._.iov.ed to budd up v._th tzme The second model J.escnbcs cluster e,,aporatlon m _urroundmgs v, here

turt_utence=,,presentmmaily The results obtained _tth thesemodels show that turbulenceenhances
:',.aporattonand _sJ controHm_Factor_nthee'.aporatlono(,.errdenseclusterse_amplesare_,hou,n
.,._ere '..,,.)tht,henrst turbulence model saturat)on ',,,asot.'amed before complete e'),aporauon whereas the
.,C'po_te ',,.J_,obtained ,_th the second turbulence modei _s the mmal a_rFuelmass tattooincreases, both
'urbulem:e hv_tor.',and the mttlal relat]',.e ,,eloclt.vbetv,,eendrops and wIases can control evaporation It =s
,,":C,v,n {,halt}'eev,.tporatzontimedecreasesv,Ithanmltlal increasem turbmencete,,elsorrelati,,e',eloc,t'.
%hen_hem_hJ_a=rrue] massrat=oincreasesFurtherand the =mt=aldrop numberdensit.,,rails u.¢thtnthe
Jdute re_me, nezther of the above parameters can control e'.apor,Itlon Moreo'.er. the e,,aporatlon tlme
Jccrca_,es _,nn the decreasing s_zeof the cluster Ibr dense clusters ol drops, whereas Fordilute clusters of

Jrops the ,_ze_snota controlhngfactor The pracucai_mphcat=onsof theseresultsared=scussed.

1. INTRODUCTION macroscale equations at certain grid pomts, th_s_san
Eulenan approach In contrast, the _,pra.v _ par-

THE_a,,THEVI_riC_Lformulation of spray combusuon ttttoned into clusters of drops that have a size _maller
,s extremel.', comphcateO, due not only to the great than that of the grid. and each cluster _s follov, ed m

number of phenomena tobe describedbutalsodue _tstrajectory,this_s,,Lagrang_anapproach The

[o the fact that the space scales revolved m these couplmg between the two formulations _s ach_e,,ed
phenomena are ,.astI_ different. For examp_=, a few through the transfer of mass. species and heat to and
of the most ob_,_ousscalesare the scale of the corn- From the cluster The pa."t)t)on of the spray into cJus-
bustor itself, the man', turbulent scales associated w_th ters asexplained above _snot an artifact because _t =s

turbulence budd up and decay, the scale of droplet corroborated b_ experimental evidence [It.
mteracuons and the scale of the drops themselv.*s. What ts described below is only the subgnd model
Thesescales_ar.',by many ordersofmagnnude From uncoupled From the macroscalet'ormulatton.This
the largest one to the smallest one and thus n ts obvt- means that the properties of the gas phase sur-

,.)us that an accurate mathemattcal descnptton at all rounding the cluster of drops are assumedk_'_own,and
' _calests lmpract=cal. Instead. a sound approach =sto what ts of mterest to des_nbe, solve Foran4 analyze

describe m detatl the macroscale where many of the ts the behavior of a cluster of drops _n thts _tven
phenomena of interest to enlpneers mvolved ,n the env=ronment.
design of combustors occur, and to associate and

couple to th_sdescnptton that of phenomena occur-
rzng at scalesmuch smaller than th,_se of immedtate 2, MOOEL FORMULATION
interest Th_s_econd part of the formulatton ts called

a subscale or subip'_dmodel because the phenomena F_gure I shows the s_tuatton under cons_derauon.
to be described occur at a scale much smaller than A monodtspcrse collection of un,formly dtsmbuted

that of the !rid size used to computattonally solve the droplets of a single-component volatde compound

macroscale problem. By the very nature of th=s two- =simmersed miD gases at a h=gher temperature and
level (ormulatton, the subseale models are more exposed to a conve_t=ve t]ow As a result, heaun_ of

approx=mate than the macroscale models and lack the the drops and evaporauon occurs. At each instant of
detatl that the latter one must have in order to be ume the envelope of the cluster of parttcles _scalled
use(ul, the surface of the cluster. The volume enclosed by the

The _ork descnbed here pertains to a subsonic surface _scalled the cluster volume, tt contams both
model to be Jsed for the desenptton of spray evap- drops and gas. Since the pressure _smam(amed con-
oratton _n a combustor. Within the frame of thts scant dunng thts process, the volume of the cluster

appro,umatton _t ts mtended chat the gas phase m _._11changewtth trine.
the combustor be described by the solutton of the The point o( departure of the present model ts the
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NOMENCLATURE

.-!= transverseareaof thecluster [cm:] t ume [s]
4_ cross-sect)onaiareaof a drop [cm:] r radialcoordinatecenteredat adrop's

a radius of the sphere of influence [cm] center [cm]
C - m [4Tr(p,D) '_Ro] F radialcoordinatecenteredat theciuster's
C. ,peczfichea"at constantpressure center [cm]

rca_g K ] Rz a,R°
.3C_ fitted C,,- C., for thesaturauonpressure Sh Sherwoodnumber

cur,,'e {calg- K-'] u velocity [cms-'] ,
Cr constant V volume of the cluster [cm_]
D dllTuslvn_[cm: s- ] c, radmlgasvelocityresidethe sphereof
E, rate of enthalpytransfer,equauon(19) influence[cms- ']
E: ratesof enthalpytransfer for turbulence W 'trappingfactor', equationI I3)

models I and 2 (j = I and 2), w, molecular weqlht [gmol-']
equations(22)and(25) y •R° :

H ¢nthalpy [call : r'R.
H.,, aR°p;L..

/-)' H H.,, Greeksymbols -"--,
/_ specificenthalpy[ca[g- ] : constantfor the Langmutr-Knudsen
hG enthaipyof the gasesat r,,_ [calg" '] evaporationlaw. 4_
hL enthalpyofthehqu,datr.._[calg-'] ./ w_.w,1
L latent heat ofevaporation [calg-' ] l" genenc function representm8 0or Y
Le Lewisnumber _ evaporation¢_¢tency.equa,on _29)
/r turbulent leng'hscale[cm] 8 CnT'L _
.'# rate of masstransfer,equatmn(21) _. conductwttyteal¢m-'s-' K "']
34,, rate ofspectes_transfer,equatton(20) _ vtscostty[8cm"=s" ']
34 :o rate or"spectes:transferfor turbulent v kinematicvlscostty,W O [cm:s-']

modelsI and2 (j =, I and2). p dens=ty[scm -_]
equations(23)and (26) _ p_p,,_

m evaporauoarate. - (I,'N) din=,dt [gs"] P,w P=wFC_I, (R_=L.)
md masso4"attdropsm thecluster[g] _ I -'/
m_, massof fuel vapor[g] r t,'t,,¢.
% massof gasesinsidethecluster[gJ
".,r 4_p; R o'

m m,,f Subscripts
.V totalnumberofdrops a attheedgeofthesphereofinfluence

n dropnumberdenslty[crn-3] all amblent
.Vu Nusseltnumber bn normalbodin$point

p "_ressurelatin] c cluster
Pr Prandtl number • ch charactensucvalue

, = d drop
Re .Ru, , v=
Re_ 2tAt(u:, u=),_]0 Su,'/v_' Fv fuel vapor
R_" universalgasconsum¢ g gas

[atmcmJtool"' K"] I hquld
R. universalgasconstant[caltool" ' K-'] r retauve
,_ radiusof thecluster[cm] s dropsurf_e.
k _/r °
R, R R° Superscnpu
R drop radius[cm] _o m thetarfield of theexternalgasphase
7" temperature[K] 0 initial value
',r R°:'D= f final: eitherwhenR,=, 004or when
T,,r L_, Cn evaporationstopped.
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•, Turbulenceeffectsdunngev.,,por_t:ono£arops,nclubmen

J -, .... \ /' whereC, and.C: are integrationconstantsNow since
, \ __ .,_...; _ Le_,. I. prod.,,,,_,Prandusingtheclassicalexpression

o \ _.__,0.0 Q'O 0
---. o oo\

' /o,_u 0 0 0,_"0 _2_"-'_
_., _------u _ -- with the assumptionPr-. 0 8 oneobtains the rol.

/"o o oO_o o °oO\

o°o°'°i0 0_0 0 0 0 0 lowingsolutionfor,),

- - _ _ C _ O ,.aO_ _ O// _hereC., and C:_arefunctionsOI '_i" and '_,, Sinceks ._ _c o
/X,O _ O 0 r_ --/ lotlo_ln_ the Schvab--Zeldo_lchapproach )' _ ,a
/_'0 C, _ -,_,0 _ '3"/
/ /"--0 " "# " 0 / hnear :unction o( ._ once ,t _s kno_.n ,o are _he

# / P'-O_.O 0 0 0>" _anou,_Y's ,n termsor _ )",and Y

The denvatlon of equations 11)-_31 is the ,ml._
no_elt._herein the treatmentor thecon_er_ai_onta_s

FIG I Sketchol thepn,,slcalSlludilOnmodeled insidethespher,"oflnfluence_,hencomparedv._ththe
t'ormulauonof ref [._]Both boundar._cond_t:onsand

model of con_ectP,e drop e,,aporat]on gi_,enby ref evaporation law at the surface ol the drops ,/re the
!21 [n that model the cluster of drops was adla- same as_n ref [2] Moreover. the energy conser,,,luon
h,_ticalI.',msu/dted from the surroundings and the forthe liquid drops _salso the _ame a_ _n rel ["l
drops _,ere mo_mg together as a rlg)d entity through )n thai _t considers the liquid temperature .i_,bem_
ther_owAsa result.[hegaspressureinsidethecluster transientanda runctionoftheradial posmon
_arleddunnge_,aporat]on[n contrast._nthepresent Note that the right-hand s_deof equation (3__s
model there_smassand energyexchangeacrossthe not analyticallymtegrableand d(_)can no longerbe
surfaceo( the clusterand drops movevHthrespectto simplye_cpresscdasa function:_fv as_nref [a,] This
eachother [f they moveaway fromeachother, then _sdueto therelaxationof theassumpuonthat _D _s
expansionoccurs. _f they move towardseachother a constant.Wnh this new Formulationtheequations
thancontractionoccurs Thus. in this newconfigur- must be solved numerically,un]esssome approxl-
ation the drop numberdensitybecomesa dependent marion ismade_norderto evaluate
,,anablewhereasthe pressurebecom_ a constant.

The mainassumptionsregardingthehqmdandgas {" d.
phaseshavebeendescribedindetailelsewhere[3]and Z()),,lO_)'__ I :.,,,, _4)
thuswillnotbediscussedh-re.S_mil_toth:_iudy

ofref.[3].inthepresentstudyeachdropisconsideredA convementwaytoevaluateZ(_,istousethe_e,_k
surroundedbyasphereofinfluencetheradius,a.of evaporation,constantviscositylimit solution
_,hlchisthehalfdistancebetweenthecentersof_wo

adjacent drops The ensembleof thesespheresof _,= _, +O:R, _ (_._
influenceand the spacebetweenthemcon_tutes the
clustervolume.However.whereasln ref. [2] thevalue and to perform the integration analytically This
of theradlusof thesphereof lnfluencewasaconstam, approximationpreservesboth _heconcavity of the
here,t is a ,,arlable w,th time. Moreover.followinga actual temperatureand ns boundary'.aluesat, - R,
previousstudy [:]. thepresentformulauonhasthree and R: and thereforeis expectedto fit well _,,,thinthe
components _a) the descnptlonofm|ss, speciesand presentmodel which takesa qualitative approachto
cnthalpyconservationinside the spl_re of influence modeling rather 'hart a quanutatl_e a_proach This
of each droplet; (h) the descriptionof mass.species approximation is also usedelsewhere[5] The quah
and enthalpyconservationin the clustervolume;and tatlve approach used here is specificallyconcerned
(c)thedescnpuonof convecuveeffectsusingdiffer- with glob-I effectsand doesnot attempt to descnbe
ential equationsexpressingmomemumconservauon accuratelyspecialdependenceof thedependent_an.
for thegasesand thedrops.Thepresentdescnpttonof ables. Moreover. the presentformulauon is qual;.
convecm.,eeffects_sunchangedfrom ref. [2].However, tauvelyaccurateonly whenthe total numberofdrops.
sincethe assump,onof constani _ density ,ns_de .V. is much larger than unity.

each sphereol ,nfluence{3] _sno loner valid, the To complete the descnptlonof this formula,on.
solutionof the convectivedilTustveequationsms,de _.hefollowing _sdiscussedbelow (I) transferof mass.
each sphere of influence changesfrom its simple speciesand enthal_y from the clusier to thee_ternal
expression[4]to gasphase.(2)me betmvtoroftheexternalgasphase

and transport ofmass.spe_esand enthalpy to the

[ jl': dv ] cluster, and 13) the conservit,onequations for therl_l=C,-C, exp C(,o_D)" (p_D)_: (11• ., entirecluster.
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(1) Transler from the cluster to the e-.ternal gaz e.,aporatlon, strictly steady• ! 711 14/40 because

The challenge here is to describe _na qmple way S,nce =nthis model thero =sno distinction between
the mass. speciesand energy transfer from a clus:er the surtace of the cluster and surfaceof the spheresof
v._th a mo_.m.=boundar,, using a model that ._to_s .nfluence ',he massand enthalpy loss from the cluster
not discriminate betu.een the ,.anous drops and a;.,: respectively Vm,,.,,and.Vm,_,,.h,_.The effectol [he
thelr associated surrounding gas phase m the _- con',ectr, e flow on drop :vaporat_on =scontam=d m
o.=rectton _aithough r,onunffo.-mtties =n • are taken ,-n_,hlch IS the solution of the purely d=ffusi_,ee_ap-
into acco.mt} oration case muitlphed by a corrective tactor ._s

The glottal un,_,read',c,:,ntmu=tyequatmn ms=dethe described =nref [2]
_phere ._t n,4ucn,.e ',_¢:d_

g F °" 7 dR I:l 7"he behattor n! the qd.3 "i_C.tSee'ltt'rndl .'., the• . /u_ler dela trcnspor' "u ;he ,lUSter
_L_,_t _,,:_,j ==,_R:_a,,,,--_R'_a,,.,_ In order to be consistent _,_th the treatment or .on-

, da _ectt,,e drop _,.aporatma of ref {21. _,hlch is _ttll pr_

-4rra:(p_L'). -4_a" _._p_. (61 _er'.ed here, v,here con,,ect=_.e effects are considered
as a correction to diffUSIVe evaporation, the ¢_ternal

Since _dR dtl <<(r),i gas phase =s first considered to ha,.e a purel,, dtff'u_=_e

d .F " I] =m-,n.o, (7 bcha,4or and Y and q satlSl'.,,_L4'rl"-', ':d" , d ,dr"
-' J _, (" 1=0 15,

u.here
The solutmn of this equation =s

[ 1"(_ = _F,-I'; _-: - I" 16_
r

T_,o ph,,,s;callimits can occur
assumm_ continuity for I- at _ = /_ Thus

(a) The smctly steady situation where

,d01 = I
4rtR:(p=t'), =.4na:lp=L'}. (9) -"= d_l,_ ,,' tO,' -,_,) _ I%

.lnd accordln_ to equation 18) one obtains
dY, I

re,o,, = m-4,ta" _itp=, _lO)
Simdarly to the descnptmn of con,.ecu_.¢ effect_ ol

In this hmlt ma,tlmum new _apor passes ihroush the ref [2]. these are seen as a contribution both from the

_phere of influence and escapesto ambient Then mdl,,idual droplet and the entire ..luster
,.n The contrtbut;on to heat transfer from the mdt-

_)" : 4rca:o_" ,._dualdrops isdue to the cluster "porosity' Consistent
" wlth the present homogeneous ,Jescrtption for the

_b_ The hm=t where all new vapor is trapped into cluster m the F.dlreCtlon this contribution for heat.

the sphereof mfluence as its surface moves. Then sixties and ma._sis modeled as

re,o,, .! 0 II l) E_ - (p_ h_ -p=.lq, )u,,4. 119)

and " Sf,, ='(9="Y,"- P_,)",,)u,.4, _20)

da

(u), = cl'_ (I2) _'f = (9=" -p,,)u..4_ _21)
The heat transfer to the emir., cluster is hq/hly

The physical reality is somewhat in between these two dependent ,.=pon turbulent transfer between the sur-
hm_ts We thus de_unea "trapptn I factor' roundmils and the cluster. Becauseof this. _t i,_ _,ery

W-m= (m=._.m,) (13) Important to understand how the h=sto;-y of tur.
bulenc¢with respect to ihat of evaporation influences

and model the behavior of the cluster. For this reason, two tur-

in wCl_= bulence models are considered and 'compared here
(u), =, ( I - W) _ �dt(14) &nce =nour calculations the coordm_,.tesystem is fixed_tth the state of the ilas_s at t - 0. u_ =, 0 and thusin

Thus th_sexpressmngives the velocity of the gases at the first model the drops do not act inmally as an

the edse of the sphere of _uenc¢ m the general case entity, but rather as individuals and turbulen_.ebuilds
and also sat=stiesthe above two hmtts because' (t) in up with ome If the cluster 'porosity' d_mmishe_,.,l_-

the ddute hmtt m, <<m=and _ ..-- I. 1,1 m the strotql n=ficantly In th_s model the rate of heat and =p¢_lC_,
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transfer integrated o,,er the entre surface of the mass los:_from the cluster to the surroundings. Thus
cluster ts _sexpre,.,sedas

, _ u, 22) dJ_,E. =4_ g--LL_,%u,--R(O_-_) I .Vm-.Vm,_*'(Po-P_,)u.A_ (_.0)"' C,m u_ dt

v,here
_f : =4,':(p,D)'Sh:_R(Y':-)",( (23)

da

Lnder :he assumption ofszmdanty between heat and m, = v f_ 4_r:piir)dr .. ( V- _ _, P=. I_I)
:T',.aSSIF.in>totS_t--%,, In:hecomputauonsfurther

7,'esentccncre'.he'.a_acot ',u_,astakentobethat and m.,,_sgt,.enby equauons(8)and _141To cal-

,or fl,o_, aroun,..l a >pnere up through the turbulent culate the dens)ty integral, the equatton of state _s
range F('J m'.okcd to obtain

_.,= I-0 IQP, R,-.'' !24) ", p,: "_ .:j_
= - I ,3"1,',,,r.. ,v.her¢Re tsbasedupon thelengthscale[-f:(us u_)_]o_ ._ R.'L_. .m -

and _elocit._',_i21 The quantltv.4(u_u_) ssan
erIectx'.eclusterarea _,h_chv.asFound to b_ tin- _,F,ere

portant m determ_mng the drag due to the surface Y).. _ l'.o = I ,:3)
torce on the cluster as a result of )ts mot,on through
,hegas[:] Therat,ou¢%;_mtactequaltothenon- '.as used The form of equahon ,3I) becomes

shp d,splacement gas flow dv,,ded b._ the total gas ,ntegrable _,hen O, us gnven by the apprc_,mauon of I
flu, equat,on t5_ and Y_. _s obtameci tn a s_mdar way

The _econd turbulence model used here ts d)fferent In thin manner m, can be approx,mated _ an ana.

from the first one _n chat the turbulent part of the I',uc. non-lnnear funcuon G I
%usseh number _scF.anged _nsuch a manner as to be ,,
,.ons,stent,.,.,th the cluster surroundings be,ng mmally m, = GfR:.R...).'_,.,_.,, Y,.,.;'..,) (34)

turbuient Th=s usdone b_ mak,ng the turbulent con- (:, Consenatwn of fuel _apor mass ,ns_de the
tnbuuon o( Vu: prooort,onal to ua rather than u, In )luster The ume change of fuel vapor mass ms,de the

:h,s _econd formulation cluster _s due to mass add,ban from the evaporated
drops, mass adder,on from fuel transported from :_e

E: : = 4_ -- L.. --- -- P,Rer _(0 _ - 0,,) e_ternal gas phaseto the cluster and mass deplet=o,a
", ua due to fuel escaping from the cluster co the external

(25) gas phase Thus _sexpressed by

%1::= 4_tlp_D)':u= . r /_(yr- y,) dt = .Vm..,-.Id_)_4_: - Vm.o,,Y_., ,35)

(26)
_,here

where

Rer : 20=,i_,un,,/_ f'_'t) m_:,- V p=YF,4_r"dr + V- -- V p..Y_,o

Cr = lr,_ (28) (30)

and Cr _sa constant " and m,,,,,. ',4_, and M_._ are ipven, respectively, by
equauons 18). (14), (20), and (23) or _26). Now

(3) The constr_'atwn equatton_ foe the entzre clu_ter ., _,

L'nderthequ_t-steadyassumptmntheseequauons i p_Y,,/dr p':w_R C,o( _ v:Y,.dv= _3"1
are as follows. ,_ R_L_,, JA, 01(0 YF."*""/)

(a) Conservatton of total mast of liquid fuel. Thns and using agann the approxnmauon of equatnon t5)
states that the mass of liqutd fuel at tnme t ns equal to we can apprmumate m_. by an analyuc, non-hnear

the mmal fuel mass minus the mass evaporated from funcuon F
the drops. Once nondnmens=onaltzecl the equatton
becomes m_, - F(R,,R,,n,O_,O_, Y_,,,Y_,.) _38)

= I - R I. (29) td) Conse_'atton of total enthalpy ms_d_ the cluster
The change of total enthalpy )nsndeme cluster :sdue

(b) Conservatmn of total 9a_eoua mass _tde the to enthalpy Ix:,nii transferred from the external gas
ch_ter. The gaseous mass at ume t _s the sum of the phase to the cluster and e*:halpy escapmg wtth the

mmal gas mass. the mass evaporated from the fuel. gaseous outflow from cluster. In all the cal.
and the mass entente the cluster of drops minus the culattons made here (t was _ssumed that ,nat)ally the
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temperature of the external gas phase _smuch higher 3 NUMERICAL PROCEOURES
:han that o( the gasts ms=de :he duster so that heat

The mtegrated drop energy equation _sconduct=on from the gases tnSl_ the cluster "o the

o,

c*temal gas phas_ :s excluded Thus the enthalpy d__I J,:':a, I nr'd,) =' 4_R:... T_quatlon IS Jt . , :r . . - ,"nh,

JH ,4",
- = E -E - ;,)1.,,,)++ t39)

Jt The temperature d_Strlbut,on T+-) m ,he Jrop ts
obtamed b_, _,otut_on oi the drop neat .'onductton

-'._eF._ )' ; ._.dE .'.:-:ip_cti'.el',_l'.enb'.eq,,..la-equ=uon b',means oI expans,on m .i,mall parameter

'on,_, ',, 4, + _"3 "')or ('5, and ,n,.erseh proportional Io . _3] Th,_ re.,ult_ ,n "he

tormat£on ol t_,o _ll"TereRtla_ cqu._t=on+ tn ',]me ;or
functional parameters. ,,,h),.h m con)ur.,.:.,:c >..in 'he

H = \ I 4-.',,., Jr- \ t 4"._- ,,.p+ Jr
•, .,urtace _rad_ent e,_r.'res_,on ,_') .n the %PpcncT_.

deterl*nln¢the temperature distribution 'he :,_,.'--

4-.,z hculars are _r, en mret" [31 The _be'.e ¢qu_hon .)
- I _ - _.}f ,,+, 140) combined _,=th tt_e __lobai enerR._ euuJtlon ,.:qL_jt:,..)n

]9). to obtain an enthalp._ equation Ior tt3c j,j_ pl3a_¢

,,,th d_ "-, ]

=,, -( ,_T,-T.= ) +41) _'L j

.... I --(.'.,7" -- T e ) (4_.= = \m|,.. "I-¢xp¢CZIR L..

L _ it -_'t, (4._;

%vh :he abo_e Jcrinmons H becomes ,,,herethe functionh _s?'_¢nby equation ,-L_)

Smce there =sa hnear relauonsh=p b_t_.cen the }+"+

FR "" ] ,_nd temperature, equations _30). (3_) and _'9) are
H= %64".1 __."-C., I ,T-T+,),'dt

L --' ,0 J not mdependent The ro;lov, ing holds

)': (_,,,i,-0+,) = Y_,,C}+=-Y,, d+,-, y, - _ .,,
F" "- "., "I ....

-+':',I ,;,°-c.,r, )I ,,,,:d,-C.,t ,:r,:,d,J ,.,++,
Variables and deter'rnmmg equations are a_ tol.

.£-_ lou, s _=,(or _,) is obtained rrom the drop h=at con-

- ( ) - _ \)[hu-C.)(T_.-T.,.)jp_. ,44) duct)ontquatton, r.<fromequat)onI30) litromequa-

,)on)48i y_,, and Y,., fromequauons i4,,)) ,_nd , _8)

C /rom equauon )..XS), R. rrom equation (._6). :+,
The first _nteeral m equauon (44) can be easdy per-

From equation iAg), and u. from equat,on _%10):ormed state,as _t ',,,,dlbe explamed )nthenextsection.
Both m+ and h are known functionsof the dependent

T(,') _s _oi_,ed as a _er)es soluuon from the energy
_arlables. ,.+ (or runctlon V) IS considered as deter-

conservationequation mmde each drop. and the two

last mte_=rals _n equation (44) are calculated using the mmm_ ,)<, and h determmes R. (These functions _.ar.,,
most strongl_ v_)th this particular _,anable select)on )

approxzmat_on pre_,=ously described,to calculate t_m(i ) The ,.artables C. Y_,,. Y_,,. R. and 0_, are ¢_,.ernedrrom equation lJ) Thus. one approximates H by an -

,_nal_tlc. non-hnear t'unct,on h,.a non.hnear set of algebraic tquattons, the other
_artables are determined directly I'rom dilfercnt,al

H = ,,_f(R:. R,,n.O+,.t_+,, YF,,. Y_,,). t45I equa|_ons
Ehmlnatmg Y_,= rrom equations (40) and (-_l

One can chromate _ as a dependent vanable from results m an equation relatmg Y,,, to C The e_.ap-

the above equauon by notmg mat for tightly packed orauon equation, equation (AS). also relates these
spheres {"] two _,anables. These two equations are _terated m

an inner loop for the vinables, constdennil all other

] +,artables Fixed, In an outer loop. I'uncttons q and li
n = 0 74 -- (46)

4no ) are _terated for R., and 0== Thms nested loop procedure

allows for a relatwely et_¢tent solution of the algebraic

"thus the dependent vanable$ which are the ¢quattonsateachttmestepofthedttfertnttalequauon

unknowns m this problem are _, R, R:, 0_=,0@. Y_,,, mtegratton. The differential equations are tie,rated

Y_,,, C. u,. u=. The equations v+htch are solved to find usmg a standard ODE integrator. GEAR. with a local

the solution I'or these ten +artables are lpven m non- error tolerance of I0"

d=menmonal form m the Appendix The model equations depend on terms proportional
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l',.mt'Ou(ence e,"Telit$ dunng (v_"-_DI1uon of drops inclusters

,o dR: dl Since R) _s formed :qgebramcaily. this turbulence hstory one obtains the same outcome.
,.lenvat)v¢ needs to be est;matec[. The procedure ('or ho_e'.er, the e,.aporauon ume _snow cons,derably

,:a:,:ulatmg thinsden,,atmve zsasfoilov_sDefine _horter
When 0 _ increases e,,en further, and the reglme of

i -0 "4
'_ =-"_ "¢,, 0 "4 p='_" ' theshghtl_ nchandt'urthcr that oftheleanmmxturesls- encountered, nee=herturbulence nor the an=tealrelaw,e

•_ ', _ ne .-_.-....,.n 'n equ-_hon ,48J On the other ,.eloc]t) are good control parameters [n 6act -_s M
-._=,: ,: = R / ,here I's a .ei,_w, el', v,eak _,ar.'.mg decrea:,es to a feu, drops-,:m an,, one of the thr.-"¢
'.._,.:.vn I"_'=> models gm,.es exactl,, the _ame result and ..ill three

"n.odels reach the same as.',mptote The re,son lor thzs
_q, ,.;l

:,_, = _ £ _ ;' :_ :hat as the :nmtmaldensmt,,, or"drops _n tne ,:luster
-' -" J: decreases, the mterstzt_al gas betv.een the drops cools

ess dunng evaporatmon, and mass and heat transt'er
._nere L.: -: ', k_ov, n and .:J _; 's Jppro,umated by trom the surroundm._s pia.,,s a decreas,n_l._ Lmportant
_, - ;,:.oraer ;_,,,v.ar,: _nzt¢ ,:_erence role In the same manner, a= the :mt:al dens_t_ of

drops ,n the cluster decreases, the drops reach the
4 RESULTS ,&NO DISCUSSION as.,,mptotecorrespond=ngto the ImmmtOl the con_,ectP,e

]'he rc:s=hs .-'r._sentcd_eh.,.a._.ere obtamed !_om ¢,.aporatmonof 1drop-,:= ["]

,..l.,;ULat;,."nS2er_or."n,ed "c'r ,z_uld ,_-decane drops Theseconclusmon,,are _ubstant:ated b,, the results

:' -'c,.,,;::n_ n .-:;,:':_ ._n_,t.._*.ed._r The :her=o- plotted m Frees.3-.¢ Depicted m F,_= 3 are 3oth the
_n_,_],;a, ,:on:,z.=r.t>'._r ,:-decane ¢h4{ v,ere used here gas temperature drop and the gas densmt.,,rise Js a
.,re 'hi _ame ._s ;no>e o[ ret i__] The =nterest here ms t'unctmon of _' For _,er) lean mm_tures and ddute
on no',_,:ur_ulence can ar1ect e,,aporauon of drops _n clusters there msno temperature drop stance the heat
.lusters _nd :_e beha_ ,or or the cluster asan enuty gore= to the drops to support e,,aporatmon _smmmmai

FL_ure" _ho_s J non-d=mensmonaie_,aporatlon time compared to the totl heat a_,adable m the gases of"
,.s :he :nmal a_r fuel mass rat=o for three s_tuauons, the cluster -_s_0 decreasesand the regtme of rich
The basehne case _s that or"the first turbulence model m_xtures msreached, a temperature drop and a ,:or-

and =: = ._00cm ¢ The two casesare chosen such respondmg denstty rise are encountered. Wrotha t'ur-
as to ,tudy the influence upon e,,aporauon of both =her decrease mr,_ one can observe the influence of
:he ,nmai reiatm_e _¢_oc:ty and the turbulence h=story, turbulent heat transfer from the sun'oundmgs m keep-

The p_e:s _how that _nthe _ery.dense spray re_pme mg the temperature at a level where mtcan support
the _nztzalre_at:_e ',eioctty =snot a good control par- evaporation. In contrast, when turbulence =snot pre-
ameter Hov,e_er. _._ changmg the h=story of tur. sent ms=tallyand =stead de,,elops v'nh ttme the tem-
buience v'tt9 respect to that ofevaporatton, one can perature drop _s more substanual and eventually

ootam nov, comp=etee,,aporatton m situations where reaches the pomt where mtcan no longer support

_he gases _n _he cluster saturated befo_ complete evaporation.
e_aporatmon v,hen the other turbulence model was The reason that the m,ual htsto_ 06 turbulence ms
used The reason for thts msthat as the drops heat up. so mmportant m controlhng evaporatmn ts dlustrated

the gasescool off'. d"the e_change of mass and heat =n Frog.4 Not only msm lar@st when the drops are
b_tv.een the cluster and the surroundin_ =spoor. the larger [2]. but also the loss fraction ts largest mmally.

gases =n the cluster _dl saturate and the drops wdl By the ume R, = 0 5. the loss I'ract=on ts neghg=ble.
etentually be at the same temperature as the gases The osctllattonsm m_o,,m observed.=r the figure,nset

thereby sto0pmng e_aporauon. On the other hand =f may be due to the =accurate numerical evaluatmn of
Iresh gasesand energy can be brought tnst¢]ethe clus- da d_ usmnga two _,tepbackward scheme. Smce the_=
ter from the surround=@, evaporatmn wtll proceed, oscdl-,hons occur m a regton where l_n,o,,rnl << 1. no

These processesare most mmponant dunn$ the mn=ttal further clTort has been made to _mprote the accuracy.
part of ¢,,aporatmon.when the rate of massloss from The loss tract=on accounts only for the mass lost
_hedrop _shL=h. [f turbulence =snot present at that from the system asa result of the mouon of thecluster
itme. et aporauon wtll eventually stop as shown by surface, but does not account I'or the gain that occurs
the basehne case. an mncreasemnthe mtttal reid=we when mass msbrought =to the cluster by turbulent

_,elocmt.,,does not atTectthe outcome Since turbulence transfer from the surroundmgs. As a result, rotsvalue

model 2 portrays a case where turbulence mspresent as a d=agnost=cmshmtted to md=catmngthe reid=rye
mmually, the exchange ofmass and heat between the tmportance of gaseousmass lost from the chester to

gases msmdeand outs=de the cluster occurs at the gaseous massgamed ms=dethe cluster through evap-
appropnate ume. and evaporauon can be completed, oration. In contrast, the global mass conservatton

For smaller $_. there _sa regime where both the equat=on for the cluster does account appropnately
h_rbulencehmstoryand u,° can control evaporatton. By for mass add==tondue to turbulent transport.
,ncreasmg _,_ one can now obtam complete evap- The vanauon of the final post=ton of the cluster
oration hcf'ore saturat=on w_th the same turbulence surface wtth respect to tts =ntttalposmt=onts shown vs

h=story by keep=ng u_° constant and changmg the _0 m Fsg. 5. As expected, for lean mtxturts and dtlute
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FrG Z Vartatton of". non-d;mens,onal evaporat,on ttme _._th 'he maual a,r fuel mass ratio T_'. =
IO00 K. T_, = 3_0K. y o., = O./P = tO cm. R" = ." _ IO'" cm

spra.,,s, when there ,s not much gaseous mass added thecluster one finds that at fixed R, th,s value _ lar_er

through evaporat,on, the cluster maintains _[songmal for smaller c_' and at fixed_o _t ,s larger for turbulence
s_ze..._s _o decreases the cluster shnnks m s_z¢due to model I When th_s v_lue _sadded, at fixed R.. to the

internal cool,rig. However. th_s shnnkage _s smaller non-d_mens_onahzed cluster ,.olume. one rinds that

rot turbulence model 2. as the final temperature was for a g_en ¢'_ the sum _s larger for turbulent model

also observed to be h=gher. Th,s contract,on _s con- 3. In all cases th_s sum ,s consistently smaller than

s,stent w_th the observed decrease ,n pressure mstde un,ty and increases w=th the _alue of _o approaching'

the cluster when evaporat,on occurred _na cluster that un,ty for large _a;ues of _ These results confirm the

was ad,abat,cally ,nsulated from the surroundings (2]. fact that e_cn when one accounts for the mass ¢scap-

Th=s pressure drop was larger wtth decreasing _o. ,ng from the cluster, contract=on due to cooling of the

_.h,ch means that desptte the very. large =ncreas¢ m gases occurs. Wtth turbulence model 1 more of the

dens=q, ,n the very rich cases, the coohng effect was gas escapes to the surround,ngs and v,,th turbulence
dominant, model Z less of a contract,on occurs.

[f the mass lost from the cluster ,s ,ntegrated ,n it _sworth menuonmg that the ddTerences obser,,ed

t=me. converted ,nto a volume by dividing by p_. and betv, een the behaveor of the clusters when the two

finally nond,mens_onahzed by the ,mt,al volume of turbulence models are constdered _s not due to the

,ar TURBUt.ENC[; • ._'.ax',C_, BEFORE

, " ..... ..:'_'_,_ _ART _

I0 ' _; SO0I I ,-_.0

---. y ' J

(11 _.0

0._

3.4 10

0.) "- ,_
0.Z tO

0,0 ..... , L0
10"1 100 l01 ,]'? loj

r o and _.,o_ weth the ,retail air fuel m,_ssratio T_ ,, 10OOK. T_, = 350 K.
Fto. 3. Vanat,ono(O_,O@ Y_.,,O,l_°,lOcm. R_,2,10 '_;m.
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TurbuMnce c,'Tect5during m clustersev_poranon of dro_

• t f

- 16

uOOtL 4 l"

" _)14 • ! --_-- ._ -LI

) ._: 22 )1 34 ..ll 5e, )' _! 3':) _J

(i

F1G .i Loss fracvon ,s R. ('or various mma$ air Fuel mass ratios r_ = 1000 K. F',', = 3-_0 K
Y;,, = O. /_" = 10 ¢m. R ° = 2 ,_ IO" cm. u/ = ._00cm s"

tact that the drops evaporate in dlfferent regtm_ [2] ruth mcreased tmual size. This effect is very.substantial
¢diffUSlVe. convective-diffusive or convect:ve) but for nch rruxturesand is observed for both turbulen_
rather due to the different :xchange processes between models, There are several reasons Forth_s, First. smce
the clustersand therr surroundings,Figure 5 illus- u,° Jsfixed,as the clusterbecomessmaller,the imtial
tracesthe fact that the re,tealixnetratton dmance. [xnetration ratio islargerandthedropsevaporateina

hJchindicatesthee,,a.ooranonregime[2]. vanesonly regimewhichchangesfromdiffusivetopredommantly
with u:)and_o and not with theturbulencemodel.At convecnvethus reducmgcheevaporation t_me Thls
fixed c_°. as R, decreases the penetration ratios con- ts illustrated m Fig. 7 where (Lp,,_)° ts plotted ,,s R'_
tinue to be extremelyclose for the two turbulence In contrast, for stoichtometncmixtures me esap-.
models, oration regime is convective-diffusive tOconvective

The effectof varymg the clustersizecan ix seenm and as tt hasbeenpomted out previously [2]. con-
Fig. 6 wherea non-dimensionalevaporation time ts receiveeffectsalwaysdommatediffusive effectsthus
plotted _s the initial stzeof the cluster for both cur- decerrninmgthe evaporationtime. Second.although
bulencemodels.For a stotchtomemcmixtureneither at fixed _o. no is the samefor all sizesof clusters..V
theinmal stzeof theclusternor cheturbulencemodel decreaseswnh _o Th)s leadsto a morepronounced
influencevery muchcheevaporationtime: however, interaction _,ith the surroundmgsand thus Faster
thereisa shghttendencyto a larger evaporat,ontim_ evaporauon.

0 rURILtF._C(' • S".r.IAr,O_,It;Oat

i0.4 =

0,)

/ <kZ
O.l

' :r ...... 10.10'0

¢o

FIG, _, Initial p_ttetratlon ratio and final position of the cluster surface vs the initial amr,t'uel mass ratio
r_, = iooo K. T_, = 350K. V_,..=0. I_°= 10cm. R_ = 2,, 10"cm.
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INITIAL CLUS'I'_ I_IU_ _'0 c'_

F%, _ ". ir/,JQoP, old P.oN-dlmCnSlOflaJ ¢'.,.Iporatlon time _lh {he =nltedi radius ol Ihd _._u::,lcr F =

,,_OOKT,, = 3._OK._',', =O.R"=;,lO" cm.u. = :OOcms

The total effect upon the final clusier sizeuspre- [n order to gaina betterunaerstandmgabout the ""
sented_nF=g._ Inallcaseslarge,clust-'rscontractbehavioroftheclusterwe dusplay=nFags._and9the
more.relativetotheirmltlal szze.thando smallerhistoryof/_,_oSincethere=sacertainuncertainty
clustersdue againto thecool,ngerTectdnscussedaboutthetnmetakento evaporate,and s=ncett
above.A smallernumberof drops,n a clusterresults dependsstrongly upon the evaporatmnmodel. Jn
unlesscoohngof the gas please,_. completeevap- orderto partially eliminatethisuncertainty,theplots
oration andfaster 'aporatmn. aremadevs R, F_gure8 representsthes_luationTbra

SnmilarlyTOthe discussionpertinentto Fig. 2. tur- nch mixture,whereasFig. 9 representsthe s=tuation j
bulencemodel2 predictsshorter evaporatl: ; times for a stotchlomemcmixture. The stoking reature_n
for denseclustersand the sameevak_ratior,time for Fig. 8 isthe inmai drop in ,_,_o which,as d=scussed
diluteclustersasdoe- .._rbulencemodel 1. The trends above, asdue to the coolingof the gasphaseand
regarding,_r _o are alsosimilar, the continual heating of the drops. Following this

decreasein,_//_o.aminimuminthisvalueisreached.

after whichthereensuesa recovery.Thisrecovery,s
; 'uR0_' due to the unvltlated (by fuel) hot gas brought=n=o0ez

' " i _ _ throulh turbulenttranspon from the gasphasesur-._ - -_ z _ roundingthecluster Asexpected,turbulencemodel
_ "-" "-"'_ ,.-., "_offersmorepossibilitiesfor recovery.As theciuster

"_ \,_" T tssmallerand thenumbero1"dropsdecreases,there=s
_,o; .n° c, _I lessof a drop In ,_.A°. the minimum /_ ,_o occurs\

\ , =.s_l • [_.",l_i earlierwith respectto R, and me finalvalueof _ ,_°
", , t'.,- , =scloserto unity. Figure9 showsthat m contrastto

_,___ \\ ._ m thench mixtures,for stoichlomemcm,xturestherets

_-' -=. no minimum in _.,_0; the size of the clustercon-
tmuouslydecreaseswith R,. However.thereislesso(
a clustershnnkagedue to the fact that there_sless

';_"_ __ t1 massin thecluster,lesscoolingandlessmassloss.

, \\ The practical implicationsof theseresults wuth

\\ s regard to optlmizauon of evaporation 0sstraight-

forward.Turbulenceshouldbeinducedm thegasm

whichthesprayisinjectedpriortooratthesameume
as mjectmn. Turbulencecan help to evaporatethe

; drops of the spraythroughtwo processes.First _t

a_l ., , .. _: can breakthe sprayinto clustersand thesmallerthe
¢} L0 "_ cm l0 _0 cluster,the shorter the evaporationlime. Second,=t

bnngs in unwtlated (by fuel) hot gas from the sur-
F:G ? Imt=alpenetrat,onratm and finalpositionof the roundingof the clusterstherebyenhancingand sup.clustersurfacevs the mmal radius of the cluster:
T_,= I000 K, T_,=,_0 K. yo . O. R° = : x LO'_¢m. porting evaporataon.Moreover. theresultsshowthat

u,_ -500cm s-' evaporationof drops in denseclusterscan be con.
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mining the outcome of evaporatzon Between these oration of.ton dilute clustersof drops./nt J Heat tfaJs

regimes of very dense and dilute clusters there exzsts Trans/er 30, 125--136 (1987)

a regime where both the history of turbulence and the 4 J Bcllan and R Cuffel. A theory of non d,lute spray¢vaporat,on basedupon multiple drop interdictions Cum-
mmaI relative veioc, ty between drops and Bases can _umon Flame 51.55--67 _to83)

bcJmportantcontrol parameters. 5 G M Hidy and L R Brock. The D_nam,cs of .4¢ro.
to/loldal S)stems. pp 99-101 Pergamon Press. OxfordFurthermore. the results show that the evaporatmn
_19",0)

Izme of a dilute cluster cannot be decreased by reduc- 6 E B' C Ecken and R M Drake. Jr. Heat ,_nd tfaJ_
mg its ,mtlal size v, htle keeping the retrial air fuel Transler McGraw-Hall. New York (195Q)
mass ratJoconstant In contrast, roe dense clusters, the " C K,ttel. [ntroductton to Sohd State Ph_vks. 3rd Edn

e;aporauon t_me decreases v. nh the in,ttal saze of the Wdev New York (1966,

,cluster d[ the _arr_e :.qlt:dt a,r fuel mass ratio. More.

o_.er, b._ ha'.mg turbulence present mmally, rather

:han iettmg _t _utld up. the e,.aporatton t,me of
;he ,:luster ,:an be further decreased.

Thus gas phase turbulence can be Important :n APPENDIX

reducing _he e_aporat,on time m r;,o ways. First. As explained m Section 3 0. _sobta=,lecl a_, a _uncuon ot :

turbulence breaks up the _pray m small :_,ze clusters from the conduction equat,.,n The ten equauons that are

right at the exit of the _u,m=zer. _,here the spray is sol'_ed for the t.n depencic.lt variables tden:med ,at the end
of Section 2 are as _,hov.n be'..:,w Define

dense. Second. turbulence acts as a _.ehtcle for trans-

porting mass. spec,es and heat to the cluster, thus "' .'d_
)AI)

supporting e'.aporatton. The abo,,e results ha',e glOp. Op. YF.,.YF,.R. P,,: L "d,a}"_..-.)
shou.n that turbulence Js a strong control parameter

for dense clusters but tt zs not a control parameter for , (0,..#,,. Y,.,. YF.,. R.. R } = L o,ta Y,.dilute clusters This means that tn order to influence " . - )

evaporation m spra.,.s one ,.hould install turbulence ;': _-dv

enhancement dev,ces right at the ex,t of the atom,zer h_ Y,.,. rF,,.._.:. R, I = J, (A3)
_.here the spray ,s dense and not further down the o't'_.-.

length of the combustor _,here the spray has become ,,,,here the integrations are performed using 0 and )"_. ,as

dilute. Indeed ,tts well known empmcally that thes g)_en by the approx,mauon of equation 15)

,s true and the present results prov,de a theoretical The equauons sol_,ed are as foH,",ws

justification for a wetl-knov, n fact. However. it would (I) _ = I-R_ tA4)

be very desirable to have a set of experiments to com-

pare v,,th the predlct,ons of the present theory. The (21 C = -,Ri 11 atmlexp _ _L. - _,,,present conclusions show that most of the sensitivity

ofour model and thus most of the control m an AC,,,.,( O, _,=,)]experiment can be expected m the dense-cluster R. I _- In -Y_ - P" )" _ - "'OY_,,-';_
regime This makes a companson so much more

d,l:ficuh because ,t ,s prec,sely ,n this regime that [,,_C,_ l\':

experiments are most d,rficult to perform because of ,( /\2_ _,,} AS)
the lack of resolution.

I "(p'D)` _' I''4,_,,,,,/cduemt,,m--The research descnbt_ in th,s paper (3) R, =. I _p_Ro" Jo Cdt IA61
_,a= performed b,. the Jet Propulsion Laboratory.. Cal,forn=a

Inst, tute of Teuhnolo_ly. and was supported by the Air Force I( i

Or_ce of Scientific Research. D,rectomte of Aerospace Set- I In I ,- t_ -o,, /

ences, the Army Research Office. Enlpneenn_ SciencesDiv. 14) C = _ ZfR,-"----_) L R, ,, ;V,
_s,on,and the U S. Department of Eneri_. Office of EnerIy L_, C C,,(p"=D)" _"::,
L uhzat=on Research. EnerlIy Conversion and Ut,hzatlon "

Technotog,es ProRrmm. through Interalencle_ _greements _.AT_
w(th the Natmnal Aetonaut=cs and Space Administration.

(5) YF..,= I - I)exp(CZ(R, )) (_8}

du= [ F V(6) ,,,,_ = - _. o.,_Cou,:
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Combustion last,rule Spnni Meetmii. Apnl (198_); du, 3x0.74 I
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Turbuienoeeffectsdunn$evaporluonof dropsmc|ttsters

, i I0,0 }¢_MI11x10?

_. 3.o L_,,l.# i
_ ',.30_- L0 3_55. l04

' 2,:: r-21,1(

_ J

L .._2_._.______ _ _

N(_NOIMENSlONALDROP RADIUS R[

FIG :_ V.tna.ttono[" the res,dualclusterradiusw,th R, for dlfferenl mmal cluster rad, for a dense
clusterof'dropsT,',= 1090K. T_,=-3._0K. yo, =0. R°="xlO -_cm.w,_-,50_cm s-'._= t57 ---.

(n_= 944x I0_cm-_,R°..-,{33).

trolledv,hercas_ hentheyarem a diluteconfigurauon Despstethessmplicttyoftheturbulencemodelsused

itcannoL Thssmeans thatevaporatloncontrolshould heretothereare many importantaspectsthathav_

be envisaged near the injector tn order to be truly been eluctdateciby _.heresults obtained wsth the two

e_'ecuve,ratherthanfurtheralongthecombustor, models.First.incontrasttodduteclustersofdrops,

the evaporation of very dense clusters of crops ts

5. SUMMARY AND CONCLUSIONS greatly affected by the Imt,al level of turbulence in the
surrounding gas. Not only _s the evaporation t_me

The model presented above _s one example of affected but also it ts shown that by havmll turbulence
subgnd models that are needed to describe spray evap- tntually present rather tntn letting tt btnld wtth tame,
orationand combustion.As such.thepredictionsof one can obtaincompleteevaporauonbeforesatu-
_he model _rtain to the global behavior of clusters ration m situations where otherwise saturauon was
ofdropsrathertbantbedetadofthebehaviorofeach obtam_ before complete evaporauon. Thus, for
drop m the ctusterand the differencein behavior densespraysthetransferprocessesbetweenthegases

between the drops belonging to the same cluster, tn the cluster and thesurroundings arecrucmi m deter.

)'UlllUt[_{ _ cm' N

' f 1_90L . __ r . I , I _ I I

NONO_SlONALOROP_UtOIU$.Rl

FtG. 9 Var_atsonof the residualclusterradml with R, for different Inltikl clustertad, for z dtt_tte
T_ = 350 K, Y,... " cm. = =clusterof drops: T_-IOOOK, o o O.R_.ZxlO-_ _ ._Ocm_",_ _ _5.7
(e°= 8,_2x I_ cm" ,,_ - 29.6).
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Turbulence erects dunn8 evaporauon of drops =nclusters

din, - VC '_l N m_ I I V E(81d--_=" ,_.-_ _.-,., _; _,.(_rr,.._-,.) "'" =o'_ /(0..0,.. Y.... Yr,..R:.R,)

"R"-_t-_.dR, _..4..[Ii l "l|(All) I-0,4R! y_,, ]
_A,[4)

_; ._._Y,..-,). 074 .__,.(_r,,.-,)
hG

dR ..,_: F_° L.K- °- -I
a.here (10) d: 4,"tR°D_-C_,'O;-t_;_l,,{ay,. - '

L

'rr% = -- 4q" ",, _" _', R R.I E,
')_"L ....

4_R°L_^IPi o)= %' Ihj I h_'

[-0"4 R? 1 (AI2) C t..) lay,., '- )p_0"4 3 a,,(¢y_. - ) * - R i Al. ¢]

where
mj

d." -- Hap, i I_! -- l)','d_
p_,,_C.,4_R° V -3 L.. C., ,)

m

V y... mj R "dR:
p; a.,_(7)"_.,- _m,-,_ "-_-r (-_131 --hlYF,,. Y.... R:.R,)_-1----0"_811'' L,,-,_,,-I __...

0"74 3 a (a)"_, - )

• here IA 161

EFFETS DE LA TURBULENCE PENDANT L'EVAPORATION DE GouTrES DANS
DES GRAPPES

R_mlie---On presente un modele d'evaporahon de gouttelette dansdesgrappese[ les mer.amsmesd'echange
entre la gtappe el la phase gazeu_ env_ronna_te. Ce mod¢l¢ est developp¢ pour utfl=._r un model,' de sous-
echell¢ dans les calculs d'evaporatmn et de combusuon d'aerosols et pour decnre 1¢comportement global
de la grapp¢, la press=ondu 8az demeure cons|ante pendant I'Evapora[mn et pat state le volume de la
grap_ ¢t la dens=redu nombre de gouttes vanent. On cons=deredeux mod¢l=i de turbulence, le prem_r
decnt revaporatlon dans I'envlronnement mma|ement sans turbulence laquelle _ constttue au touts du
temps, le second modele decnt l'evapo_tmn dans renvtronnement lorsque la turbulence ex=ste=n=t=alement.
Les resultats obtenus montrent que la turbulence auipnente revaporauon et qu'eUe est un facteur de
commande de revaporauon des grappm ires denses. Lorsque le rapport mmal desmassesa=r combusuble
augmente, a la fo=s I'h_s¢o=rede la turbulence et la v,tesr,¢ relauve mma|e entre iouttes et Eaz peuvent
contr61er I'evaporatmn. On montre que le temps d'evaporauon d=mmue avec un a¢=rotssement ,nmal des
n,',eaux de turbulence ou de la vde_ relauve. Lor_ue le rapport mmai des nuutte_ a=r ¢ombust,ble
augmente encore plus et que la de_ne tamale du hombre de iouttes emre le _lpme decbluuon, au¢un des
deux parametre= ne peut contr61er r_vaporauon, Le temps d'evaporauon de_roi| ave¢ la d=mmuuon de la
taflle de la _appe pour de= Irappes de Iouttes denses,tandis que la tafl|e de la ilrappe n'est pasun facteur

l,m_tant pour les iprappe=dilu=es. On dr=cutedes_mphcauons prauques de _ resultats.
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.)' BELt.AN and }(, HARSTAD

EINFLL'SS DER TURBULENZ AL'F DIE VERDAMPFUNG VON TROPFEN IN
SCHWARMEN

Zmuuameid'asmal--E,n Modell ffir deeTropfenverdampfun8 m Schwa=menund furdie Austauschprozess=
z'wtschendem Schv.arrn und der umgebenden Gasphase wlrcl vorgestellt Dtescs Modell wurde zur Be.
rechnung der Spruh_erdampfung uncl der Verbrennung entw_ckelt und beschretbt ,lur _lobale Vet.
haltensmerkmale yon Tropfenschwarmen Der Gasdruck _m Tropfenschwarm bie_bt wahrend der Ver-
_ampfung konstant, als Folge davon _aruert das Volumen des Tropfenschwarms und dse Tropfenanzahl
pro VoLumenemhen Z',,,¢_ Turbulenzmodelle werden herangezo_en Das erste Modell beschre_bt the
',erdam0fung _on Tropfenschwa=men in emer Umgebung. dm anl_,nghch turbulenzfrel let Jle Turbulenz
b,_L,t _a,.h_rs[ mlt _er Zezt auf Das zwet(e Modell beschre_bt dee Verdampfung yon Tropfenschwarmen tn
_mer I_rr_ge_ung ;n _er _on Anfang an Turbulenz vorhegt Die m_t dlesen Modellen erhaltenen Ergebmsse
:e_gen. dad Turbulenz ,.1,¢Verdampfung begunst_l;t und em kontroiherender Parameter b¢_ der Ver.
Jamprung ,,on sehr d=chten Tropfenschwarmen _st Be[speciewerden gezetgt. =ndenen met dem ersten
TurbuLenzmoctell Satt_gung vor der _ollstand;gen Verclampfung erhalten wurde, wogegen slch m_t dem
zv.e,'en TurbulenzmodelI das Gegented ergab Steqp das -%nfangs.Mas._nverhaltn=sLuft BrennstolT.so
ka ,owohl d_e Vor_esch_chte tier Turbulenz ..,Isaueh die _nfangs-Relatwgeschwmd_gke_t z",,._schen
Tr:_ten und Gas d_e _,erclampfung bcemr]usscn Es w_rd gezetgt, dab die Verdampfungsze_t m_t caner
Erhohung des Turbulenzgrades oder der Anfangs-Relat,',geschv, md=gkelt abmmmt Ste=gt das -_nfangs-
',,iassen',erhaltnls Luft Brennstoffv.etter und t_llt d_eTropfenanzahl pro Volumenemhelt zu 8egmn m den
Oerexch fur [ocXere Schwa=me. so beemflul3t kemer tier be=den obcngenannten Parameter d=eVeruampfung
Bet ch,.hten Tromenschu, an'nen _erkurzt slch dle Verdampl'ungszelt m=t abnehmender Gro0e des
Sehv, a=ms. bel lockeren Schwarmen hat die Gro0¢ kemen E=nfluO D_e prakt,schen F'olgerungen aus

den Ergebmssen..erden d_skutlert

3<_xI)EKTbl TYPBY,1EHTHOCrH HPH HCHAPEHHH K3ACTEPOB KAR_3b

_Tllml_----['Ip_=CTaLleHa_OttP_lbwcnapeHN_lK.lac'repol Icall¢.lb 14OflH¢_HIdnlX)UeCCIdo6MeHa weac._y
K.lacl'epaMN _ HeCycUtRra3ollol_ cpe2oA. P_Llpa6OTiNNae _4o.1e.11_II,lllCb I1Ot_CL_t'OqNOl_,HtnO,lb]ycT¢l
_.la patqrra HcnapeNNa HFOpeN111pacnld.lol =aneab, a no_o,_ yqHTIdS_r TO,IBIO r.lo6a.lbNide O¢O-
6¢HHOCrNnose2eHWI Hcna_lBou_xcl [,la¢'repol. r[pe,Ino,larae'rcl, qTO I npouecce NcnapeNRi _al._e.
linera_t s x-_ac'rel_ OCTaCT_anOCTOINHliO,I, TiE qTO nepeMeHNWMNILIIIOT¢I O61_M r, laCTep& N
_IOTNO_b qNC.'lal_1_,'fb I HeM. _lP.CtMOTl_qllld_ MOt_e.INT_y,leN'rNoc'rlL ["[eplMIJIorlHCIdl_eTH¢rll*
peHie I_laC'l'epl I _0eJ_eoI I¢OTOIX)_!IHaqMI I_y,leNTHO¢_'b OTtyrC'TlyeT, RO "no_L,l.=oqa._¢l" co
IlpeM¢11eM110Mtpe lll¢l_a_ql_l KAIC'r¢,1_Ol.BTopu MO=e,lb OnRCldll_='rBtttll:_,_e LII¢I"el_ I tpe=e ¢
H&qLlbHO_ Typ_y._eN'lTIOC'RidO.COr.IIU_IIO O_IIM MOAe.lJM T_y.leNlllO¢_ ycl¢0plel" Ntnapelule.
Is.llKb onpe.1e.lmoumM ¢_U[TOpOMnpl iemtpelllna OqeNbII,.1OTIIblXI_ll_--I'epOI. _pwle,_e_ npw._ep_
I KOTOpWXno,ra_tNo, ,n'o ¢ Rclto,nr=,.lOUaleMnepsoll _1o=e.111Na¢l,m,teN11eH_"Wnae'r .lO nO,llloro wcna-
peN111[alle.lb, a c wtno_tb=OltlUleM iTOlX)l 11a6J_lOAJ_T¢lnpoTaeonono=¢m,ul )(_)err. RpR ylle.111_e.
HHN H&qa.lbHoro _ac_oloro OTNOmI11NI so_=yx/ropm_ee HcI1bl_11Ne_11111_1_ItU O1"npe_Jd¢l"op11N
Lvp6y,leNTNO¢"t11,Tat _ 01"HlqMbHOm OI"NO¢'_'T¢lbHOI_¢EopoeTN .11111KeHIIl|lill_lb If ri31L nola3aNo.
_TO speMI Ncnal_H111yMemb_,1"¢l, e_.IN H|qMbHId_ ylX)l_Hb Tyl_y.leHlllo¢'nl ¢111Oll_OtNTe.lbHal
: ,opo¢'rb Io3pac'ramT. ['[pll cTtue¢1_. I_IOM ye_.JIll[qe11NNHaqiblbHOro_cosoro OTHOl_eNXllllOatsyR,
TOm_HIO w y_eHbWtHHN uqLnlbHOdl IIUIOTHOC'rRqHC.la Kane.lb .1o p_3p¢_[elIHoro petl(xJu_H110=WHH3
sboueyxa3a11HIdXnaplMl_Ol HI OICL1MluwrpetUalOl_¢fo MNINNI HI HC_I_NIII_. KpOM_ Toro _Oel*
3aHo,NTOI_eM! NCllI_INN! y1141Nbll_1%'l¢ yMeHbLUeHNeM_i]ML_I LIIC_e_ @N _O_bUJO_r_lOTNC_rN
q_c._a [a_e,lb, a np_ MIL_Ot _AO71OCll pl3_p r_icTeps Ne tl_llr_l Ofl_._I_LUNM _rropoM.

O_'y/_LIOTCI _lClllq4_IN_ Icnerlld no,lyqeNNIdX_y_bTITOI.
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ABSTRACT

Two global models of droplet cluster evaporation which take into account drop

interactions are compared. Comparisons between the results obtained with the two

cluster models show that although the qualitative trends are the same, quantitative

discrepancies exist. To evaluate and improve the models it is suggested that

experimentalises measure evaporation times and cluster decay/growth [a_es in the dense

cluster regime, and for small clusters, where the sensitivity of zhe r_sul_s is

highest.

INTRODUCTION

Measurements performed in sprays characteristic of power systems show that sprays

are composed of several regions [i]. Near the atomizer the drops might not be

entirely formed and liquid sheets and filaments might still exist. There follows a

region where the drops are already formed but have not yet been dispersed, so that

they cluster together with a typical distance between the drops that is of the

order of magnitude as that of the average radius of the drops themselves.

of the spray is called the dense spray region. Finally, further from this dense spray

region there exists a region where the drops might still cluster, but in these

clusters the distance between drops is much larger than the average radius of the

drops. This region is called the dilute spray region.

In the dilute spray region drops are far apart from each other and thus when the

spray is exposed to a convective flow, these drops practically behave like isolated

drops in a convective flow. "In contrast, in the dense spray regime, the drops are

close to each other and thus their history is controlled by how much of the surround-

ing gas can enter in contact with them. This is to say that, unlike for drops

belonging to dilute clusters of drops, transport phenomena are crucial in determining

the behavior of drops belonging co dense clusters of drops because transport imposes

limits on heat and mass transfer between the two phases. These phenomena pertain to

indirect interactions and they can control the drops motion, their heat-up time,

evaporation, ignition and combustion.
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Previous work of Bellan and Cuffel[2] and Bellan and Hars_ad [3,4,5] pointed out

some important consequences of these indirect interactions. Two models of turbulent

transport were used in Ref. 5 in order to investigate the importance of turbulent

transport from the surroundings to the cluster. Because of the global aspect of the

model in which all the drops were assumed to behave identically, the transport from

the cluster to surroundings was modeled using a "=rapping factor." Basically, the

"trapping factor" is a weighing factor which allows the modeling o_ intermediary

situations between those of dilute clusters where evaporated mass was assumed to be

trapped in the cluster and that of dense clusters where evaporated mass was assumed to

escape to ambient. It was found[5] that whereas in the dilute regime turbulence ks

not a controlling parameter, in the dense regime it becomes the crucial control

parameter This is a fact well knewn by experimentalists and design engineers who

loca_e turbulent enhancemeDt devices near the injector _ere the spray is dense,

rather than further down the combustor where the spray is dilute.

Since the transport processes between the cluster and its surroundings were found

to be so important in the case of dense clusters, it was thought very important zo

improve the description of the transport of heat, mass and species from the cluster

and its surroundings. This new model is described in detail in Ref. 6 for

electrostatically charged drops, and is used to calculate the results presented below

for the special case of null charge. Due to the brief nature of the Technical Note,

the nomenclature is the same as in Refs. 5 and 6.

The model developed in Ref. 6 is similar to that of Ref. 5 in that,:he drops and

gas have two velocity components: a uniform axial componen_ along the trajectory

direction and a radial component. The difference between the two models is in the

description of the radial velocity component. Whereas in Ref. 5 a "trapping factor"

was used as discussed above, the new formulation uses the assumption of sel_-

similarity in the radial direction as explained in detail in Ref. 6.
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RESULTS AND DISCUSSION

Calculations were performed using the models of Refs. 5 and 6 for n-decane drops

evaporating in a spherical cluster surrounded by unvitiated ambient air at atmospheric

pressure. The =hermophysical constants used in the calculation have been listed in

Ref. 3.

Figure I shows a comparison of the results obtained with the two turbulence

models for each one of the "trapping factor" and similarity models. The evapo'_:ion L-

t=_e which is plotted versus the intial air/fuel mass ratio represents either the time

when R 1 - 0.05 or the time at which saturation was obtainea. As can be seen in Fig

l the discrepancy between the four sets of results is small in the lean mixture and

dilute spray regime. This is because in thi_ regime transport processes are not

important in determining the evaporation rime due to the fact that the drops are far

apart and enough heat is available for their evaporation. As the initial mixture

becomes rich the discrepancy between the "trapping factor" and similarity models

becomes larger. In con=fast to the results obtained with "trapping factor" model, the

similarity model predicts that turbulent transport is important even in the rather

dilute cluster regime (n° _ 5 x i0_ _m'3).

_en ¢o decreases fucther, the initial mixtuce becomes richer and =he drop nu2aber

density falls _nto the dense regime (n° > I04 cm'_). As the initial drop number

density is larger, turbalence becames crucial in determining the evaporation time as

ic is clearly shown by both c].uster models. However, the results become extremely

sensitive to the cluster model itself because for example for n° - 5 x I04 cm "_ the

"trappi_g factor" model predicts saturation before complet_ evaporation whereas the

similarlty model prsdicts the opposite. It is expected that the regime of saturation

before complete evaporation will be encountered with the similarity model at higher

n° . What this comparison shows is that global models such as one of Refs. 2-5 can be

expected to offer only a qua!i_8_ive understand|.ng. The quantitative p_edlc_ions can

be obtained only when the results of these global models can be compared wi_h

experimental observations. On the other hand experimentalists need information on
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what to measure, and where to make measurements. The present results show chat in

, order to validate global models, measurements of evaporation times should be made in

the dense cluster regime where the sensitivity is highest.

In Fig. 2 the evaporation time is displayed versus the initial radius of the

cluster for an air/fuel mass ratio corresponding to a drop number density which is the

divide-% "ue for dens</nondense sprays under the initial conditions shown in the

legend. 5oth cluster models predict that turbulent transport effects are =ore

important for smaller clusters. This is due to the smaller volume to surface rat=o

and thus to the greater need to transport hot unvitiated gas to the drops Ln order to

promote evaporation. Although the qualitative predictions of the two cluster models

are the same, quantitatively the smilarity model predicts a smaller effect. Once

again, experimental observations are needed to show the quantitative effect of

turbulence, and these experiments should be performed in the small cluster regime

where the sensitivity is hlghest.

The importance of the cluster mGdel used is again illustrated in Fig. 3 where the

final size of the cluster is compared with the initial size of the cluster for several

initial cluster sizes. In all cases larger clusters conr.act more, relatively =o

their initial s_.ze, than do small clusters. This is due to the heating of the drops

and the consequent cooling of the gas phase. A smaller number of drops in a cluster

results in less cooling of the gas phase at complete evaporation and shorter

evapo:ation time; this is the case of the smaller clusters. A higher turbulence level

will enhance transport of hea6 to the cluster and thus there will be less coollng and

consequently less cluster contraction; this is the case of turbulence model 2. For

small clusters and high turbulence levels the similarity model predicts that the

cluster actually expands. This is another trend that needs experimental verification

In this case observations should be performed again in the small cluster regime.

Finally, plotted in Fig. 4 and 5 are respectively the relative fuel mass loss and

the relative total mass loss from the cluster ac the end of evaporation. These

results were obtai_ed with the similarity model, which is believed to be the more

133

1990015254-137



accurate of the two cluster models. In the case of dense clusters, the relative fuel

mass loss from the cluster is important because ignition outside of the cluster is

expected[ T ] with only the ejected fuel participating in ignition. The fuel loss ratio

depp'ds _rrong|y on the cluster slze and the _urbulence model. In contrast, t!_e total

mass r=cio is nearly insensitive to the turbulence model for large clusters, with a

larg'r sensiclvitv shown for smaller clusters. However, similar to the fuel mass

ratio, the coral mass loss ratio increases substantially as the cluster size

decreases. The larger fuel loss and greater entrainment for smaller clusters may be

attributed to their larger surface to volume ratio. It is important to notice that

the present model does not account for vortical motion of the drops inside the cluster

and thus the results predict a minimum amount of mass escaping from the cluster due to

the lack of centrifugal force effects. In order to validate experimentally models

such as those described above, rates of growth or decay of clusters are needed fo£

comparison.
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FICb_E CAPTIONS

Fig. 1 Evaporation Time versus Initial Air/Fuel Mass Ratio.

TOga . lO00OK, TOgs - 350°K, Y°Fva - O, U°r - tOO cm/sec,

R° - 2 x 10.3 cm, _o _ lO cm.

Fig. 2 Evaporation Time versus Initial Cluster Radius.

_o , 1.57 (n° - 9.44 x i0a cm "3, R°2 - 13.3), TOga - lO00°K, TOgs -

350°K, Y°F_.a - O, U°r - 500 cm/sec, R° - 2 x i0"3 cm.

Fig. 3 Nondimensional Final Cluster Radius versus Initial Cluster Radius.

4° - 1.57 (n° - 9.AA x 103 cm "3, R°2 - 13.3), TOga - 1000°K, TOgs -

350°K, Y°[_va - O, U°r - 500 cm/sec, R° - 2 x 10.3 cm.

Fig. 4 Fuel Loss Ratio versus Initial Cluster Radius Obtained with the

Similarity Model.

4° - 1.57 (n° - 9.&4 x 103 cm "3, R°2 - 13.3), TOga - lO00°K, TOgs -

350°K, Y°Fv a - O, U°r - 500 cm/sec, R° - 2 x 10-3 cm.

Fig. 5 Total Mass Loss Ratio versus Initial Cluster Radius Obtained with the

Similarity Model.

4° - 1.57 (n° - 9.4A x 103 cm "3, R°2 - 13.3), TOga - 1000°K, TOgs -

350°K, Y°_,a - O, u°r - 500 cm/sec, R° - 2 x 10.3 cm.
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I. INTRODUCTION

Sprays, created by atomizing liquid fuels, have been considered for _ long

time as one of the most efficient ways of burning liquids. This is because in a

spray the surface-co-volume ratio is greatly increased compared to a blob of

liquid. The extra surface increases the efficiency of transport of heat to the

liquid, thereby promoting evaporation, ignition and combustion of the fuel.

Liquid sprays are also used in agriculture to spray crops, in the Food industry,

in coating, and in printing.

In order to improve all these processes, one needs first to understand

them. Such understanding can be achieved in a variety of ways. For many years

now, the only universally accepted way of improving a process was to physically

experiment with it. This involves building a prototype operating under a

variety of conditions. The results of these experiments are recorded and

compared. The prototype system can then be "tuned" to operate under the optimal

conditions achieved during the experiment. The simplistic "cut and try" me=hod

described above is making room for & growing use of analytical methods and

computational techniques based on the availahillny of large computers.

Experimental techniques, which have become themselves increasingly

sophlsnicated, are usually very expensive and are llmined non only by the

sensitlvlny of che dlaEnoJ=ic bur also by the range of condlnlons _that can be

studied. I many cases, in is cheaper to vary the parameters in an existing

computer code =o slmulana a differenn physical slnuanlon than in is to build or

alter an experimental set-up no obCaln new exper_mennal results. The

flexibility of computer codes in terms of inpuC condlnions and output results

make them a very powerful noel both for en6ineerlng calculations and

underscandlng the fundamentals of physical phenomena.
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Below I shall describe how the comFutational approach has helped the

understanding the fundamentals of spray evaporati6n, the interactions between

the drops in a spray, the interactions between the drops and the gas surrounding

them, and subsequent ignitlon and combustion. This ut:derstandlng in turn

provides the basis for controlling these phenomena.

A typical liquid spray is composed of _hree main regions, al_hough the

boundary between these regions is not always very distinct. Near _he atomizer

there is a region of liquid filaments that are the precursors of drops.

Adjacent to _his region is a region of very closely spaced drops such that _he

spacing between the drops is of _he same order of magnitude as theJr size" this

is called _be dense spray region. Further downstream one encounters a region

where the drops are no longer closely spaced; this is called the d.lu_e spray

region.

Recent observations of liquid-fuel sprays have revealed _hat although _ne

fuel flow _o the injector is cons=an_, drops appear to cluster in the spray and

remain clustered during combustion (I,2,3,4). Thus, there is no= one continuous

flame surface in a burning spray, but instead there are many flame surfaces,

each one enclosing groups of drops (3,4).

A characteristic feature of sprays is =he wide range of space scales

involved in _heir dsscrlp_ion. For example, a few of the most obvious scales

are: the scale of the enclosure, if any, where the liquid is sprayed; the many

turbulent scales associated with turbulence build up and decay; the scale of

droplet InCerectlons; the average dlstance bst'wesn drops; and _hs scale of drops

themselves. These scales vary by orders of magnitude from the largest to the

smalles_, and _hls implies that an accurate mathematical deecril_tlon a_ all

scales is impractical. To circumvent this difficulty i_ has been proposed (5)
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t:lat the macroscale, which is the scale where phenomena occur cha_ are of
e

interest to engineers, be describQd in detail and that the mlcroscale, which

encompasses the _cales much smaller than the macroscale, be described in an

approximate and global manner. The coupling between the two scales must be

achieved through the boundary conditions at the micrcscale level. The

microscale formulation is _iso sometimes called a subscale or subgrid model

because the phenomena that are _nvoived occur at a scale much smaller than _hat

of the grid size used to .:omputationaily resolve the macrcscaie problem.

Inherent to this two-level description _s the understanding that the subscale

models are more app_oxlmate than the macroscale models and lack of detail that

the latter are required to have in oraer _ be useful. This concept is similar

but no_ idenclcal to _he proposed partlcle-source-ln cell model by Crows

ec.al. (6).

l_e observation of clusters of drops in sprays points to the natural choice

of the cluster size as one of the impor_ann microscales. _iuhin this frame ic

is envisaged _hat each cluster should be followed on i_s trajectory in a

Lagranglan way and _ha_ _he coupllng b_rween the cluster and lus surroundlngs

should be achieved _hrough proper bounc_try condit%ons a_ nhe clus_Qr surface.

One example of _he lmplement_._ion of ch!s concept can be found in Tambour (7).

He partitions _he spray In_o _eccion of drops of known charactefis_ics and

follows each group of vaporizin 8 drops along a streamline _n a La&ran_ian manner

while calcula_In8 one integral characcerisclc quantity for each section. In hl_

model _h_s integral quan_i_y can be either _he number of drops, surface area of

the drops, oc volu_e of the drops. A misslng inpu_ of _his model is e

calculation of drop evaporation race in each secciou; instead, the author

cleverly estimates this race from _he experimen_a_ data of Yule ec. el. (8)
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using the _2 law aTproximat_on. As expected, the cha_acteri_tlcs of °_ch t-

group of drops change during a calculation. Thus, it is Important to ,:alculate

these changes as they occ'_£ rather that to fit them in an approximate way

priori, using exoerlmentsl data. This _xample indicates that models of droplet

clusters must be able to handle the many areas wh_re drops exist in a spray,

going from the dense region co the dilute region as discussed above.

Experimental observations show that dense and dilute collections of drops

behave very differently. In the dilute regime the drops are so far away from

each ocher that the}' behave as if isolated for all practical purposes. The

behavior of individual, isolated drops under a variety of assumptions is

described by classical theory (9). In contrast, when drops a_ clo _ly spaced,

_heir behavior changes due co llmita_ions on heat and mass transfer which result r

from drop interactions with the background gas. These interactions are called

indirect or long range interactions. Direct or short range Interactions, such

I

as drop collisions, coalescence or breakup, will not be discussed here. Beer

and Chigie_ (i0) show that the quantity obtained by dlvldimg the difference

between the initial droplet diameter squared and the actual diameter squared by

the time elapsed from the initial condition_varlem non-monotonically with the

average inter-droplet separation distance. In contrast this quantity is a

constant for an isolated" drop and is called "the burning constant." As the

inter-droplet separation dis_ance is reauced from large values for which drop

interactlonJ are negligible, the burning constant increases to a maximum, and

then decreases. This behavior arises beceuse heat losses are reduced when the

drops are brought sllshtly closer together, thereby increasing the burning •

constant. However, when the separation Is greatly reduced, the amount of oxygen

available for combustion diminishes and thus decreases _he burning constant.
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This lacier sltuaclon0 which typically prevails in spray, wal investigated
e

exper;=encally by Koshland (11,12) and Koshland and Bowman (13). Th_c results

show :hat, in agreement with Chlgler and McCreath (14) and Eao and Le£,mbre (15),

both evaporation and combustion of groups of Interacclve dcops depend on drop

number density as well as the oxygen concentration in the ambient gas. Oxygen

competition was ldentlfied (Ii, 12, 13) as one of the processes thac can change

the combustion mode of groups of drops from individual flames around drops (in

an oxygen-rich envirorusenc) to a group combustion =o_e where the flame surrounds

the droplet cloud (in an oxygen-lean env:ron_enc). Thus, the predlccion of the

global gas phase characcerlstics inside the drop cloud is of paramount

importance for the calculation of both evaporaclon and burning rates.

Moreover, many of the pollutant fo;ming reactions also depend indlreccly on

the drop number density and the oxygen concentraclon. Sanglovannl and Lisclnsky

(16) showed experlmencally _hac _oot production is a strong funcclon of the

in_erspacing between drops. Their results are actually conservative with

respect co the slcuation in a spray, because in chelr droplet-scream experlmenc

_here was no way co account for the influence of lateral spacing between drops

in the dlrectlon perpendlcular' co the streaa. In a real spray, the average drop

is surrounded in all three dlmenslons by ocher drops. For a variety of fuels

and AmblenC oxygen concenCtatlons, it was shown chat by increasing the droplet

spacing, a substantial decrease can be obtained in the soot emlssion (16).

Reductions in spray flaae temperature and NOx levels were also assoclaced wlch

droplet interactions as shown by Chernansky and $arv (17) who interpreted their

results in terms of oxygen depletlon during burning. Additionally, the quesclon

of whether _he drops disappear well before the entire a_ounc of fuel-vapor is

bucnc has direct bearing co _hs forma_ion of carbonacsou_, porous particles
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called cenospheres, i_Lese particles form from each individual drop during

combustion of heavy-oll sprays once the more volatile hydrocarbons have

evaporated and the tar-llke material is left behind. It appears that contrary

to the classical d_-law assumption of equal vaporlza=ion and burning rates, even

for mildly dilute groups of drops (initial drop number densities of 18-80

drops/'cm3), the vaporization race is higher than the fuel vapor oxidation rate

(ii). Thus, the drops disappear well before the vapor fuel is burnt, and

homogenous burning prevails during the latter =ime of drop cluster combustion.

The above discussion indicates that models of drople= clusters must be

f3exible enough zo accommodate both dilute and dense configurations and that the

cluster drop number density influences many of the crucial aspects of

combustion. The remainder of thls article is organized as follows: In Section

II, I describe some current models of drop interactions and show that they have

limltatlons important enough to preclude them from being used as subgrld models.

I- the third section I present the approach thac we propose for modeling drop

interactions. I show that our model has the potential of being used as a

subgrid model. In addition, I discuss specific situations that were modeled and

the results obtalned using this formulation. Finally, the Conclusion, Section

IV, contains a discussion of the need_ for further research.

If. SURVEY OF DROP INTERACTION MODELS

In _he _rlsln_ context, models of droplet in_eractlons describe the

interactions among a large number of drops. This precludes model_ of detailed

interactions between small numbers such as _wo _r three drops. While the few-

drop models have helped to understand dsparturas from single, Isolated-drop

behavior, they themselves are not candldaces for subgrld models of dense sprays.
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Moreover, these few-drop models involve large computational expense as well, and
Q

thus are not economically suitable as subgrid models.

One of the earliest concrlbutlons to the modeling of multiple drop

interactions was made by Zung (18) for the evaporation of drops in a=mospherlc

clouds. The cloud is approximated by a series of cubes having sides equal co

the distance between the centers of _wo adjacent drops. Thus, each cube

contains an identical drop in its center, and these cubes are further

approximated by spheres of equivalent volume. Zung assumes that no mass

transfer occurs between cells, and uses this assumpcion to predic_ the rate of

drop disappearance in terms of an average concentration inside the cell. The

results of _his model show tha_ the evaporation race of a cloud is strongly

dependent upon both the drop radius and the distance between drops. In

particular, saturation of the vapor in the _bienC gas can occur before complete

ev_poraLion in some cases.

The drop-ln-a-cell idea is also used by T1:hkoff (19) who slmulaced the

interactions among evaporating drops by using an isolated drop In a "bubble" of

finite and consCan_ radius. Beca'_uBe boundary conditions ac the "bubble" surface

are specified as a function of time, _he actual interactions between drops

during evaporation are given and not calculated. However, by cleverly changing

the size of _he bubble, _ishkoff shows chae the inlclal spacing between drops

strongly influences the outcome of evaporation. When the bubble is large

compared Co r_e drop, _J_e drop evaporates completely; whereas when !c £s small,

vapor phase satu_a=|.on may occur before cosplete evapora_ion.

Chiu and his co-workers (20, 21, 22, 23) cook • very different approach.

In _heir Initial analysis, • paraaecer C, which is the ra_io of total heat

transfer between the two phases co oh4 hea_ needed Co evaporate the drops, is
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identified as a crucial number indicating t_s combustion mode for the drops in
Q

the spray. If G exceeds a critical value, a single flame surrounds the entire

spray and the drops burn in what is called an "external group" mode. In

contrast, below this critical value of G, isolated droplet burning occurs. This

analysis was later (22) refined to include other combustion modes between these

_wo extremes. _'he weakest aspect of this model is the difficulty in obtaining

information nece ary to calculate G. Finding G involves the use of empirical

formulas characuerizlng _he exchange of mass, momentum and energy between the

phases. These formulas are based upon those of the classical slngle-drop

evaporation in infinite surroundings. Realizing this, an attempt was made

recently (24) to improve this model through the use of a modified drop-ln-a-

bubble model. The "test" drop is surrounded here by a "first coordination"

shell which corresponds co the radial position of the largest number of drops

close to the test drop. Thus, statistically there can be other drops inside the

cell, but the model will not take this into account. Using the same idea, a

series of second, third, etc. coordination shells are developed. The farthest

shell from the drop is a transition shell, the outer edge of which has a

continuum of drops_and at this outer edge the gas properties are prescribed for

the determination of the drop evaporation rate. The droplet arrangement inside

these shells must be provided either experimentally or theoreuicall_ through a

palr-dlstrlbutlon function thac represents the joint probability of finding a

drop located at a given distance from the test drop. Since this information

must be p.ovLded at every Instant of time, and it is very difficult to obtain,

except for the simplest of situations which can be treated using simple

focmallsms, chls latest model of Chlu et.al, does noC seem practical.
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The idea of group combustion was also ex_ined by Correa and Slchel (25).

Their model assumed that the te_merature of _he gas in a spherical, uniform,

monodisperse cloud of fuel drops immersed in _ qulescent atmosphere was

initially in saturated equilibrium and that it stayed so during combustion.

This assumption precludes the calculation of the influence of drop proximity

upon the gas temperature inside the cloud and this has a bearing upon the

calculation of the drop evaporation rate. Additionally, they also assumed the

ratio of the inter-drop distance to the drop diameter to be of order I0, so that

the conclusions based upon results obtained with this model apply only to this

regime and not to much denser collections of drops. The largest drop number

density for which results were presented was 3xl03cm "3. The results predicted

the existence of a Chln inwardly propagating vaporization wave at the edge of

the cloud, a decrease in cloud radius following the classical d2-1aw with a

modified "evaporation constant", and a flame-radlus to cloud-radlus ratio and

flame temperature independent of the cloud parameters. The flame temperature

was found to be independent of the cloud parameters because the gas temperature

inside the cloud was assumed fixed at the saturated equilibrium condition during

evaporation and combusclon.

Group combustion of drops was modeled in a totally dlf£erent manner by

Labowsk 7 and Rosner (26), _d Labowsky (27, 28, 29). Undar the quasi-steady gas

phase assumption, two different approaches are used to model interacting droplet

burning (26). In the flrst approach, the cloud is treated as a continuum wlth

the droplets acting as d/strlbuted sources of fuel and sinks of oxygen. In the

second approach, the flame location is calculated for cubical arrays of up to

729 particles. The flame location is found by solving the Schvab-Zeldovich

equations. These equa_ions are further transformed to Laplace equations which
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in principle can be solved by the method of images. However, since the

computational costs of the second approach become prohibitive when the number of

particles reaches about 20, Lhe authors solve the equations using a

superpositlon method which is an approximation of the method of images. In this

approximation, higher-order terns on the image series are neglected with the

result that particles are again treated as point sources and their fields are

simply superimposed. Thus, again, interactions due to particle proximity are

neglected as these interantlons would have been contained in the higher-order

terms. The continuum method yields reliable solutions only when the number of

particles is large (in a dilute cloud), _nd the second method yields reliable

solutions only when the number of particles is small. The results show that in

virtually all practical situations of interest, clouds burn as a total group.

This condition is defined as that occurring when the cloud as an entity provides

sufficient vapor so that fuel and oxygen meet in stolchlometrlc proportion

precisely at the cloud boundary where they will burn.

Although drop interactions are not accounted for by Labowsky et.al (26),

one important contribution of this work is to have ident, fled the ratio of the

fuel-cloud radlus divided by the fuel-particle radius as the important

characteristic which determines the mode of combustion of the drop in the cloud.

If this ratio is less the6 a critical value, the particles burn individually.

On the other hand, if this ratio is larger than another crltJ al value, the

flame surrounds the entire cloud. Presumably, if the characteristic ratio falls

between these ,:wo critical values, there will be several separate flames

surrounding groups of drops inside the cloud. Al_hough the superposition

approximation is no_ made by Labowsky in (27), the actual calculations are

limited to a three-droplet array which limits the generality of the results.
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AddlCionally, the analysis uses the assumption chat the particle temperature is
a

not affected by the drop interactions, an assumption which is certaln_y not

valid for closely spaced drops, as it will be shown later. In fact, all the
d

comparisons between this theory using the method of images and experimental

observations (28, 29, 30), are made with experiments containing two, three, or a

stream of drops. This is because, the method of images leads to financially

prohibitive calculations for arrays of more than about 20 drops (26). The

largest number of drops considered in a calculation performed with this metho_

was 25, and the comparison was made with a stream of interacting drops (30).

For the two, three or 25 linear-drop array, the comparisons with experiments

showed reasonable agreement for the drop lifetime when Compared with experimenus

involving two, three, or a stream of drops, respectively.

Samson et el. (31) developed a simple model to describe spray combustion

by combining the classical isolated drop theory devoid of hydrodynamic effects,

and various statistical concepts. In chls model, the burning rate of the drops

is identified with their evaporation rate, a fact that is contradictory to

experimental evidence (ii). Some favorable comparisons with experlmcntal data

are presentzd, but, in order to obtain these results, the unknown radius of the

spherical fuel cloud had to be assigned. The values chosen for this radius were

selected to obtain best c6mparlsons between experiments and theory_ However,

the authors point out (31), that the experiments used are not really appropriate

to compare wlr.h _he _heory because they involve well defined droplet arrays for

which statls_Ical models are no_ applicable.

Umemura (32) identifies a function, f, intrinsic to the geometrical

configuration of the cloud and independent of _he combustion characteristics, as

the characteristic indicator of droplet interactions. In Umemura's (32) quasi-
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steady qulescent-a_nosphere theory, the drop-evaporation rate is again

identified somewhat incorrectly with the burning rate Just as in the isolated

drop theory. Results are presented for a system of two droplets.

The effect of particle interactions, first on drop evapora_ion_ and then on

drop burnirg, was also modeled by Ray and Davis (33) and Marberry et al. (34).

The isothermal droplet evaporation model of Ray and Davis (33) further assumes

that, despite evaporating, the particles do not change size (rate of change of

size _uch smaller than the diffusive velocity of the transferred species) a,,d

thus there is no convective transport. By assuming that the particles can be

treated as point sources or sinks, the authors preclude the treatment of dense

collections of particles where the concentration or temperature field around

each drop interacts with that of the neighboring drops. Further, the results

show that the m3del becomes invalid if the number of particles exceeds the ratio

of the distance between particles divided by the particle radius. This

represents a serious restriction to the model. The same assumptions of

quiescent atmosphere and constant particle size are kept in Marberry et al.

(34). The burning rate of each drop is given by material and energy balance at

the drop surface and these are the equations that now determine the source

strength at each droplet location. The results indicate significant deviations

from the isolated droplet burning rate if the distance between the drops is

smaller than 20 times the droplet radius. These results were obtained for

systems of 2, 3 and 4 dreps, tetrahedral and cubical arrays so that none of the

drops was entirely surrounded by o_her drops. In that respect the estimate of

_he above ratio of 20 should be understood as a lower limit.

Annamalai (35) modeled the evaporation, ignition and combustion of a

droplet cloud as well• However, _he results cannot be expected to he reliable
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because his formulation did not contain a genuine description of droplet

interactions.

The 3-dlmensional numerical study of Shuen (36) was meant to investigate
G

the effect of droplet interactions on transport phenomena for droplet Reynolds

numbers of 5-!00, droplet spacings of 2-24 diameters, and oxygen concentrations

of 0.I co 0.2. The physical situation studied is that of a monosize, planar,

semi-infinite droplet array oriented perpendicular to the direction of the flow.

Shuen also assumed a quasi-steady gas phase with respect to the liquid phase alld

no drop heating. The geometry studied suggests immediately that droplet

interactions will be underpredicted since there is no drop that is surrounded on

all sides by other drops in a 3-dimensional sense. Furthermore, since the array

is semi-infinite, the amount of heat available to the drops is not a limiting

factor as it is in real sprays. Moreover, the neglect of droplet hea_ing

immcdiately suppresses one of the most important modes of droplet interaction;

that is, competiticn among drops for the available heat. It is not surprising

that the author finds that Interactlons between drops become negligible for

_pacings greater than six droplet diameters and Reynolds numbers greater chat

ten. He also finds that drop interactions result in an insignificant change in

drag per drop.

All above-discussed models of drop Interaction are deflciedt in some

important way which precludes both the predlctlon of the behavior of dense

clusters of drops and thelr incluslon as subgrld models as discussed in the

Introduction. In the follovin 8, I discuss models that have promise in both

these respects, In contrast to the models discussed so far, they include

explicitly the effects of drops interactions. In addl_Ion, they are formulated
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in such a way that boundary condit_ons with the surrounding gas can be changed

in order to describe a vari_Ly of situations.

III. MODELS OF DROP EVAPORATION. _GNITION AND COMBUSTION BASED UPON MULT_PLF.
DROP INTERACTION_

The models described below pertain to a variety of situations and a

description of their assumpt:ions can be found in Table I.

I. Constant-Volume tVariable-p_essur_) Cluster Models

In the approach taken by Beilan and Cuffel (37), a cluster of spherical

monodisperse, uniformly dlst_ibuted drops is considered, and the cluster voltune,

Vc, can have an arbitrary shape and contain an arbitrary number of drops, N.

Figure i shows each drop of the cluster surrounaed by a fictitious sphere of

influence whose radius is half the distance betw_er_ the centers of two adjacent

drops, Thus, the volume of the cluster is in fact the volume of these spheres

of influence added to the vol_LNe of the space between =he spheres of influence.

Prom simple geometrical considerations usual in sol%d-state theory (38), it is

k_lown _-hat the radius of the sphere of influence thus deflne_4 is

/

I vo\i/3
a - .) (I)

N 4./3 /

where Vc is the clus=er volume, N is the total number of drop_ and "a" is the

radius of the sphere of influence. In reference (37), the volume Vc was

adiabatically Insulated. but =hls res_rlction is removed in later studies which

will be discussed below. On the length scale of many drops, the cluster is

cor_idered spa¢lally Lomogeneous in the thermodynamic quantities. This means

chat each drop behaves like all other drops in the cluster. Moreover, all
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dependen_ variables are assumed to be uniform in _he interstitial space be_een
!

the spheres of influence. Thus, the conservation equations for this cluster of

dcops consist of: (I) =he dlfferenclal conservation equa_ion_ fo_ each drop and

gas phase inside a sphore of influence, (2) =he global conservation equations

for all drops inside the cluster volume, and (3) the perfect gas law. In

reference (37), the classical quasi-steady assu_ptlon for the gas phase is made

and thus the _ifferential equations for she gas-phase inside the sphere of

influence can be solved exactly. The quasl-steady a_sumption is well-justified

at atmospheric pressure since Pg/Pt = 10-3 where pg and p_ are the gas and

liquid densities respectively For simplicity it is assumed that thermodynamic

equilibrium prevails in the gas phase at the drop surface, and :hat the drop

temperature is uniform but transient. (These assumptlous are also relaxed in

the later studies which are discussed below.) The solution of these equations

contain as parameters the unknown values of species and temperature at the edoe

of the sphere of influence. Since _hese quantities also appear in the global

conservaticn equations and the perfect gas law, the system of equations is

closed. At every time step, the solution consists of the evaporation rate, _he

radius of the drop, the value of the fuel mass fraction and temperature at the

drop surface and at the edge of the spheres of influence, the density and the

pressure (both assumed uniform in Vc).

Comparing this model _o some of the previously described models one notices

that this model is dlfferen_ both from Ti_hkoff's (19) bubble model and Zuns's

(18) cell model, even though iu also isoia_es each drop in a sphere of

influence. Ic is differen_ from Ti6hkoff's modal because the conditions at the

edse of the sphere of influence are not imposed, but |.nstead are calculated as a

consequence of _he dropleU interactions. Im is different from Zung's model in
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quite a few aspects, but mainly because iC dues not impose zero mass transfer

between the spheres of influence and it relates _he evaporation rate to an exact

masz fraction inside the sphere of influence instead of an averagud value. When
c

the volume of =he cluster is constant and the cluster is insulated from the

surroundings, the quasi-s_eady and spacial homogeneity assumptions imply that

there i_ no transport between the spheres of influence because there is no

transport out of the cluster and because of symmetry. In contrast to Zung's

model, however, we can evalua=e how well the quasl-steady assumption holds by

calculating the gradient a_ the edge of the sphere of influence l'be results

show that because the quasi-steady assumption deteriorates as =he radial.

coordinate, r, increases, the model improves as "a" in Eq. (i) is smaller, that

is for dense collections of drops.

All the calculations presented below are for n-decane. Symbols in the

figures and text are defined In the Nomenclature. Figure 2, produced from Ref.

(37) shows plo=s of both the cluster eye,potation time, tendl , obtained with the

model described above and the ratio of this time =o chat of the evaporation time

obtained with a model of dilute spray evaporation (39), tendl/tedl . For dLlute

collections of drops, the predictions of the two models agree. However, as

soon as the non-dimensional radius of the sphere of influence, R2, is smaller

than or of order i0, (see, Figure 3), departures from =he dilute theory occur.

In fact, when comparlng with the dilute theory, four universal regimes are

idencifled as the equivalence raclo, _',,varies from very large values (fuel-

lean) to very sull values (fuel-rlch). In the flrs= very lean regime, the

results of the =we theories agree. In the second reglme, evaporation is

completed before saturation bu_ the ratio of _he =we evapocation times,

tendl/tedl, is a function of %. In =he third reglme, non-dilute spray theory
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predicts saturation before complete evaporation, whereas the dilute spray theory

predi:ts the opposite. Finally, in a fourth regime, both theories predict

sa_uration before complete evaporation buc at cLfferenc ci=es and values of the
4

residual, drop radius, RI. In the fizst and the second regime, tendl is a

decreasing function of _, wher-as in the thlzd and fourth regime its becomes an

increasing function of _. ,'

Although "hese regime are believed to be universal, the values of

separating them change as a function of the fuel and the initial conditions.

Thus, non-dilute effects can occur even at larger values than R2 - 10. For

example, non-dilute effects car, be found even for very d%iute sprays when the

total mixture is rich. This is illustrated In Figure 4. When # is constant and

the initial interstitial mass fraction of fuel vapor, Y°Fva, increases, the

cluster becomes more dilute and the liquid fuel mass decreases. Because of

thi_, the interstitial gas temperature, Tga, stays higher _han a_ lower values

of Y°Fv a since less heat is transferred to the evaporating drops. Thus. as

Y°Fv a increases, two competing effects determine the rate of evaporation and

therefore the value of tendl : Y°FV a is larger which tends to decrease the

evaporation rate, bu_ Tga is larger as well which ten_ to increase the

e-aporation rate. The interplay between _hes6 two effects is such thau as Y°Fv _

increases from zero, the "vapor-pros ure effec_ dominates and _herefore tendl

increases vi_h Increasing Y°Fv a. In contrast, the d_lu_e spr_ theory predicts

tha_ tedl decreases monotonically wlth Increasln 8 Y°Fv a.

The results of Figure _ are no_ directly comparable wi_h _hose of Koshland

(11) because in those experiments, the oxidizer mass fraction and droplet

spacing were decreased independently. Here, as _Fva increases (and thus the

mass fraction of oxidizer decreases), _he droplet spacing increases because the
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equivalence ratio is kept constant. However, since Figure 4 shows chac rendI is

a very weak function of Y°Fva and since a decrease in droplet spacing results in

increasing tendl (see Figures 2 and 3) for co_piete evaporacio_i before
c

saturation, it _s expected that tendl increases when _he cxldIzer mass fraction

decreases while the droplet _pacing is constant. This ylel_s the s _e result as

that of Koshland (ll) who _ound the burning rate decreasing with decreased

ambient oxidizer mass fraction. The results of the theory of Bellan and Cuffel

(37) also showed thee the square of _he normalized r_dlus does not decrease

linearly with time, and thus the d_-iaw does not hold for interacting droplets.

To improve the predictive abilities of this model some simplifying

assumptions of _he above forml_latlon were relaxed in Bellan and Harstad (40).

In particular the more realistic Langmuir-Knudsen kinetic evaporation _w

replaced the Clausius-C!apeyron rela_ionshlp, and _he drop temperature was

conside:ed no_ only transient buC a function of radial position.

The general idea of the model is to accoun_ f_r globai e_fect_. Thus, even

though there is a nec flow of gas and heaC through the surface of _he cluster,

these effects are no_ modeled in detail, buc only 81obally. In this particular

case mass and heat inflow or ounflow through the boundary ar_ assumed negligible

with respect to _he mass and hea_ concen_ of the clu_uer. The'results show that

in face this is a very" good approximaclon for nondiluce c!usters where

penetration of the clusters by surroundin_ gas Is confined to a very chin shell.

On the other hand for dilute clu_cers where penacraclon is subs=anclal,

convective flow .effecns are appropriately taken into account by correlations

relating the evaporation race in convective flows co chose _n _uies_enc flow and

_o the Reynolds number. For lnclrmsdiace regimes of drop number density the

model Is still ex_ec_e_ to be a good global approxtaatton. Consistent with th_
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assumption of small pressure gradients, the exchange of momentum between drops

and gas is treated on a _ocal basis and is considered to be due to: (1) transfer

due to evapora.ion, (ii) transfer by fluid flow interaction in the form of a
c

drag coefficient, and (iii) transfer due to small pressure gradients. The

ensuing momentum equations are

-- - -n _ ur / pg + - i + pg/(nm d) Ad CD u2 r (2)dt 2

- - Ad CD U2r + CDc Ac/ (3)md

(¢g + nmd)

where ur - ud Ug is the relative velocity between drops and gas inside the

cluster, m is the evaporation rate, n is the drop number density, pg is the gas

density, md is the mass of one drop, N is the total number of drops, Ac is the

transverse area of the cluster, Ad is the transverse area of a drop, and CD and

CDc are respectively the drag coefficient for one drop and the drag coefficient

for the cluster as an entity.,, These momentum equations ere coupled to the other

equations. Here CDc is based upon a length scale [Ac(Ug/Ud)/W] 0"5 and is a

function of the resultant Reynolds number only. In contrast, CD depends both

upon Re and m. The dependence of CD upon R2/R !, and thus the "blockage" effect

due to drops shielding other drops from the flow, is here neglected. The

Reynolds number Is based upon ud. It is important to notice that these two

equations /leld the correct limits in the cases of not evaporation (_-o), no

sllp (ur _ o), and quiescent ambient gas (ug - o).

Since the kinetic evaporation law and the equation of state form a non-

linear implicit sst of equations for the pressure and evaporation rate, a
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prediccor-correccor scheme is used to solve the entire sec of equations. _te

drop temperature is solved as a four-term truncated series in powers of the

nondlmensiongl radial coordinate, z, and a GEAR integrator package is used to

solve the set of ODE's. For each integrator step, the iteration starts with the

prediction of _he drop temperature. _en the equation of stata and kinetic

evaporation law are solved using a Newton-Raphson iteration for the pressure and

evaporation rate. Next, the convective correction is applied to the evaporation

rate and finally the drop temperature is corrected. The iteration is repeated,

starting with the Newton-Raphson procedure, until convergence is obtained.

Thus, each time step requires a nested double-loop iteration to calculate the

drop temperature, evaporation rate and pressure, me calculations can be

performed on a personal computer or on a faster computer if more speed is

desired.

An interesting quantlt 7 to calculate is the penetration distance of the

surrounding flow into the clus=er. This is done by following the cluster on its

trajectory and identifying this distance with the relaxation distance, which is

the distance travelled to the location where ur-O. Thus, Eq. (2) is rewrltter

in Lagrangian variables and integrated. The solution is

2 In [l + UCr pg(gg/B d + n) Ad CD/(2mn) ]

LI_" (9g/m d + n) Ad Co (4)

If the ratio Lp_, where R is the cluster radi_, is larger than unity,

oenetratlon Is Importan_ and thus evaporatlon is controlled by convection. In

if 5p/R is much smaller than unity, evaporation is controlled
contrast by

diffusion. Zetween these two regimes there is an intermediate regime where both

convection and diffusion are important. In this intermediate regime, the

evaporation rate is very close to that in the convective evaporation regime
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since convective effects dominate diffusive effects during evaporation. _ls is

illustrated in Figure 5 reproduced from Ref. 40. Calculations (40) of i_/R with

R"-IO cm show that the diffusive regime correspond to the very dense (ru__lOScm"3)

add dense (105cw "3 > n_10Acm "3) clusters, whereas the convective regime

corresponds to dilute clusters (n < 103cm "3 ; 4 > 4s - 15.7 for n-decane where

and 4s are the air/fuel and stoichiometrlc alr/fuel mass ratio respectively).

Figure 5 shows that the evaporation time reaches an asymptote fast as

increases from the dense to the dilute regime. Additionally, this _igure shows

that the model is not very sensitive to the drag model used, providing the drag

model accounts appropriately for the "blowing" effect due to evaporaclon. This

blowing effect tends to decrease the drag coefficient by comparison to the non

evaporation case.) The conclusion regarding dra_ modeling is valid for the

small to moderate range of rela_iv© velocities used in the calculation.

Furthermore, the plots of Figure 5 show that U°r is a relatively weak parameter

for controlling evaporation in both the dense and dilute regime.

The variation of the relative velocity of drops evaporating in clusters of

various initial equivalence ratios is shown In Figure 6. Figures 7 and 8 show

respectively the variation of the drop velocity and Reynolds number with

residual drop radius. Figure 6 shows that the relative velocity of a dense

cluster of drops decrease_ faster than does the relative velocity _f a dilute

cluster. The opposite is true for the drop velocity, as shown in Figure 7.

This is due to the fact that when a dense cluster of drops moves through the gas

it exposes a greater surface area co the flow because at fixed R, the number o£

drops in the cluster is larger. For this reason there is a stronger interaction

between drops and gas, and thus faster relaxation of ur to zero. In contrast,

ud depends on the inertial effect of the cloud. Since a dense cloud has a
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larger mass, it slows down less than a more dilute cloud. Finally, we find thac

the Reynolds number decreases very fast during the drop lifetime, in agreement

with the isolated drop results of D_Ter and Sanders (AA). These results also

show thac in convective flows, the concept of cluster density is strongly

related to _he value of the relative velocity between drops and gas. Dense

clusters quickly become "non-porous," that is, impenetrable to the outer flow.

In thls case only the outer shell of drops is exposed to the flow. In contrast,

dilute clusters are "porous" and the ambient flow substantially penetrates into

the cluster.

The results of Bellan and Harstad (&0) show that the drop temperature

becomes uniform very fast in dense clusters of drops (about i% of the drop

lifetime). Additionally, as depicted in FiKure 9 it is found that the drop

temperature also becomes quickly _niform even for dilute collections of drops,

although the heat-up time is now about 20% of the drop lifetime, and thus cannot

be ignored. This is to be contrasted with computational results for single

drops which showed that the temperature was staying nonuniform during most of

the drops lifetime (45). In agreement with the results of Ref. (45) Figure 9

shows that the drop te_eri6ure continues to increase during the entire drop

lifetime for dense and dilute clusters of drops. It must be pointed out that

the results of Ref. (40) wbre obtained using a transient conduction equation to

describe droplet heating. This is justified because the ratio of the

characterlstl= time for circulation to the characteristic time for heat-up,

[A_/(p I Cp2)]/(_i/9_) ], is of th_ order of 3xlO "2 Here A, Cp and _ are heat

conductivity, heat capacity at constant pressure and viscosity, respectively,

and the subscript "2" refers to liquid, Thus, _he heating time is indeed

independent of the circulation time, Jus_Ifylng the use of the spherically-
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symmetric heat-conduction equation. Based upon these results, It seems

appropriate to ignore drop-temperature nonuniformlties when one considers the

evaporation of dense clusters of drops for single - component fuels. Thus it is

appropriate to use a one dimensional spherically symmetric model to describe the

evolution of the drop temperature, instead of the more sophisticated model of

Ref. (45). Since subgrid models should be compucacionally economical, because

they are to be incorporated into large and expensive macroscale codes, the use

of a simpler model could yield substantial computational _avings.

2. Constant Pressure (Varlable-Volume) Cluster Models.

2.A. _vaoor%_ion

While the models describpd above contribute to understanding the difference

between the evaporation of dense and dilute clusters of drops, such models are

not appropriate as subgrld models. The reason for this is the lack of

appropriate boundary, conditions at the macroscale level in order _o describe the

in_eractlons with the surroundings appropriately and self consistently. These

boundary conditions provide the coupling between the microscale and the

macroscale and thus are crucial to a subgrld mcdel.

The models described next apply To clusters of drops chat are as large as,

or larger than the Taylor'macrosca].e in a flow; that Is, they' are _ least as

large as the largest dynamically significant eddies in the flow. This means

that, unless the scale of the computational grld is larger than the Taylor

macroscale, the followlng models cannot be used as subgrld sodels.

Unfortunately, this means that if such models are incorporated as submodels, the

grid may have to be rather coarse and thus the calculations will lack detail.
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The development of su_models for a finer grid scale is an important area of
m

future research.

In Bellan and Harstad (5) a model accounting for mass, species and energy

transfer across the surface of the cluster is formulated. In this model the

drops move with respect to each other and thus expansion and contraction of the

cluster may occur, l'b.us,in contrast to the models of References (37) and (40),

the drop number density becomes a tlme-dependen_ variable, whereas pressure is

taken as constant. A pictorial representation of the situation studied is shown

in Figure 10a. In this formulation the gas density inside each sphere of

influence is no longer uniform, but becomes a function of the radial position in

the sphere. The model still keeps the previous basic features with

conservation equations for the drop and gas inside the sphere of influence,

global conservation equations for the entire cluster and the perfect gas law,

but there are two new elements here: (a) a model for transport from the

surrounding gas to the cluster, and (b) a model for the drop motion inside the

cluster that pertains to transport from the cluster to the surrounding gas.

2.A a. Transfer from the surrounding gas co the cluster.

Consistent wlth the assumption thac the cluster size is much larger than

the size of she smallest dynamically important eddies, turbulent heat transfer

may be described using a Nusselc number approach. Further, similarity between

heat and mass transfer is assumed and thus She - Nu c. Because It is very

important to understand how the history of turbulence affects cluster behavior,

two turbulence models are consld_red and c<_mpared.

In the first tuzbulence transfer model the drops do noC act initially as an

enClty, buc rather as individuals and turbulence builds up with time if she
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cluster porosity, chat is if ur, diminishes slgniflcantly. In the second

turbulence model, the cluster surroundings are assumed to be initially

turbulent.

2.A.b. Transfer from the cluster to the surrounding gas.

Similar co the above, two models are considered hera as well. In the first

model transport is represented using a "trapping factor" model for the gas

velocity at the edge of the sphere of influence (45) to calculate the mass loss.

The trapping factor is an interpolation coefficient between a strictly steady

gas phase limit where there is strong evaporation and maximum new vapor passes

through the sphere of influence (representing the dense case, mg << md) , and the

limit of null loss where all new vapor is trapped inside the sphere of influence

(representing the dilute case, md << mg).

The second model for the drop motion inside the cluster (46) introduces a

similarity parameter, _ - _/R. For a given drop, _ is a constant which varies

in the cluster between: zero and unity. Whereas in the previous model drops and

gas were moving respectively with velocities ud and Ug in the axial direction,

now there is an additional radial velocity component, respectively _ dR/dr and

Uge where uge is the gas velocity at the edge of the cluster. Thus the radial

slip velocity ac the edge of the cluster is Ure - _/dt Uge. Note that on a

large length scale the eva_oratlng drops form a uniform mass source density and

this is conslstent with the similarity assumption. In this model, global

momentum equatlons for radial and axial velocities are formulated in a manner

similar to Bellan and Harstad (40); unlike in Reference (_0), _ now appears in

the momentum equations. In general, the momentum equations are consistent with

similarity with the exception of nonlinear drag and convective derivative terms.

To be consistent wi_h the other global equations where the radial dependence
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does not appear, average equations are formed by integrating over _. This

eliminates some coupling between axial and r&dlal velocities due to convective

derivative terms, and also means that the tendency of nonlinear drag to destroy

the self similar radial motion is neglected.

Figure 11 reproduced from Beilan and Harstad (&7) shows a comparison

between the prediction of the four models. These models are listed in Table If.

In the dilute cluster regime there is excellent agreement between the

predictions of all four models because evaporation of drops in this regime is

not controlled by transport processes. In contrast, in the dense cluster regime

transport processes control evaporation, resulting in substantial quantitative

disagreement among the results of the four models. Qualitatively, the

predictions should be similar: tevap reaches a maximum in the dense regime and

decreases as 4 decreases. The cluster is initially denser, and eventually

saturation is obtained before complete evaporation. Thus, validation of dense

cluster or dense spray models requires experimental results precisely in this

large drop number density regime.

The models of References (5) and (47) also predict that in absence of

internal vortical motion inside the cluster, dense clusters will first contract

due to internal gas cooling and then expand due to turbulent transport of hot

external gas inside the cluster. The stronger is the turbulent transport and

the smaller is the cluster, the smaller the contraction and the larger _he

recovery towardJ the original size. In general, it seems that clusters do not

recover their original size by the time the drops have evaporated. Toual fuel-

mass loss from clusters turns out to be very small for large clusters of drops,

but increases substantially for small clusters of drops (47). The accurate

prediction of this quantity is crucial for dense clusters of drops bec,_use
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ignition is expected to occur outside of the cluster (48) and It is precisely

this ejected fuel vavor which ignites to establish a flame surrounding the

cluster.

2.B. I_nition and Combustign

The prediction of droplet ignition in clusters is very challenging from

many points of view. In power generation systems, clusters of drops are exposed

to convective flows that sweep fuel vapor ejected from the cluster into the wake

regime behind the cluster. Thus, ignition will be a result of the interplay

between transport processes from the cluster to the surroundings which bring the

fuel vapor from the interior to the exterior of the cluster, convective effects

outside of the clusters which sweep the fuel vapor into the wake regime, and

chemical kinetics. This interpretation is in agreement with the experimental

results of Sate et el. (50). The authors (50) infer from their experiments that

ignition occurs at the s:agnatlon point of the tip of the fuel spray. The

ignition delay is due to the interplay between _-wo effects described by two

characteristic times. The first effect is convection, and thus the

characteristic time is that spent for reducing the velocity gradient at the

spray tip below a critical velocity g_adlent at which ignition occurs. The

second effect is chemical kinetics, and thus the characteristic time is that for

ignition (that is chemical run-away) to occur at a given velocity gradient.

Safe's conclusion is that in their particular experiment the latter time is much

smaller than the former, and thus chemistry dominates ignition delay times, In

other experiments convection effects might dominate chemical effects. This

picture is very different from that of the IEnlclon of a single, isolated drop

in quiescent surroundlngs or even that of slngle-droplet ignitlon in a

convective flow (A9).
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It is important to notice that in cluster ignltlon, co_Ivectlve effects are

important. If the cluster is d_.lute, the effect of convection arcund each drop

will be important. If the cluster is d_nse, the convective effects around the

drops located on a shell at the boundary of the cluster will be important

because outer flow penetration is confined to this shell. The denser the

cluster is, the thinner will be the shell.

The experimental observation of thin flames surrounding clusters of drops

(2, 3) suggests that it may be reasonable to describe ignition and combustion

using the classical fla_e-sheath concept (8). This means that instead of using

a chemical kinetic approach to ignition and comhusulon, an ignition criterion

combined with a flame-sheath approach might be used instead.

Such an ignition criterion was developed by Bellan and Harstad (48). To

predict the ignition location, a two dlmension_l map is built to compare

convective and diffusive effects. The convective effects are measured by the

extent of flow penetration into the cluster, quantified as the ratio of the

penetration distance to the radius of the cluster. If this ratio is much

smaller than unity, evaporation and thus iEnition is diffusion controlled.

Therefore the ignition location can be identified using the criteria developed

by Labowsky and Rosner (26) for quasl-steady combustion to determine whether

p&rtlcles burn indlvldua[ly or collectively. Moreover, in this" diffusion-

controlled reglme, the ignition timing is predicted using a Damk_ler number

criterion _1£ch compares characteristic diffusion and reaction times. This

Do_k6hler number criterion is valid only for diffusion-controlled situations,

and thus the corresponding ignlClon criterion is valid only for nondilute

clusters of drops exposed to a modara_e to weak convective flow. When the ratio

of the penetration distance to the cluster radius is of _he order of, or much
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larger than unity, evaporation is respectively _onvection-diffusion and

convection controlled. Since convection effects are always stronger than

diffusion effects, the role of convection must be important during ignition. It

is this author's opinion that a field computation, taking into account both

convection and chemical kinetics is necessary to determine the ignition time in

these situations. Ignition criteria similar to that of the Domkohler number,

but also involving the Reynolds number for a single, isolated drop, would be

irrelevant to cluster ignition, except for very dilute clusters. Such criteria

cannot take into account the very important transport processes between the

cluster and the surroundln_&. Bellan and Harstad (AS) show that ignition of

nondilute clusters of drops invariably occurs external to the cluster, and that

the boundaries between the diffusive, convective-diffuslve, and convective

regimes defined above are functions of the fuel and the initial conditions.

Using the above model of cluster ignition, Bellan and HarsCad (51) have

formulated a model of nondilute cluster combustion. In this model, fuel

evaporated from the drops is ejected out of the cluster at a rate determined by

the balance of transport processes across the boundary of the cluster. After

ignition there is a very short-lived, weak, premlxed flame depleting all oxygen

inside the cluster which is followed by a thin, counterflow diffusion flame.

One crucial aspect of this combustion model is that the burning rate is not

equal to the evaporation race, in agreement with the experimental results of

Koshland (ll). Also, the flame temperature depends upon the cluster parameters

unlike in the work of Correa and Sichel (25).

Figure 12 reproduced from Reference (51) shows the fraction of fu-_ burnt,

fB, at iEnition and at the moment of drop disappearance for the weak and strong

turbulence models described above versus the Initial alr/fuel mass ratio. As
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experimentally observed by Koshland (II), there is still a subs_antial amount of

fuel vapor left to burn when the drops disappear. Figure 13 show_ the ratio

between the fraction of fuel burnt and the fraction of fuel lost, fB/fFl_ when

R-O versus @o for the same conditions as those of Figure 12. When the cluster

is initially denser (smaller @O's), this ratio ts smaller because _ore fuel is

ejected from the cluster, making the flame stand further from the cl_xster.

More vigorous fuel evaporation and fuel loss, and shorter evapora¢ion time,

explains why the ratio between the flame radius and the cluster radius, Rf/R, is

larger for turbulence model 2 than for turbulence model I. Thls results in

smaller values for fB/fF_ when turbuienc6 is s_rong (_urbulence ,model 2) _han

when turbulence is weak (turbulence model I).

In all calculations carried out with this model, varylng parametrically _he

initial cluster size, the ambien_ gas temperature and _he initial drop

temperatures, the flame establishes itself very close to the cluster boundary

and _f/R is at most 1.01. During burning _f/R varies but never exceeds 1.01.

This is in complete agreemen_ with the experlmen_al observations of Allen and

Hanson (2, 3) and Nakabe et al. (4) for "pockets" of drops.

The restricted range of initial alr/fuel mass ratios investigated wi_h this

model corresponds to _he range of moderately-dense clusters. For larger values

of _o, the gas phase Ins|de _he cluster becomes lean a_ ignition. The present

model is limited _o describing combustion after ignition when _he gas phase

inside the cl_ter ia rich. For smaller values of @o, _he cluster becomes very

dense and ignition does no_ occur before _he drops disappear. This means that

burning will occur in presence of uhe gas phase on_y, a situation thae the

presen_ model does noc _rea_ properly. In _his la_er st_uacion _urbulence
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effects and flame wrinkling become dominant, and these phenomena are not modeled
o

here.

Figure iz_, reproduced from Reference (51) shows that smaller clusters of

drop_ are more efficient at burning fuel, a fact which agrees with intuition.

2.C. _vapora%ion and Dispersion of EieG_ostaticaliy Char_ed DroDs

i_ was mentioned in the Introduction tnst soot pzoduction is a strong

function of drop proximity, increasing as the drops _et closer and trap the fuel

rich gas between =hem where soot formation reactions occur. Calculations based

upon a simple model of electrostatic drop dispersion carried out by Bellan (52)

indicated that electrostatic drop dispersion might be a viable concept for

rendering clusters more dilute and thus controlling soo_ production. Recently,

a more realistic model of evaporation of electrostatlcally charged drops has

been formulated by Harstad and Bellan (a6), and some of the rasults obtained

with this model are presented belo_ in order to illustrate another aspect where

there i_ a difference of benavlor between dense and dilute clusters of drops.

The model describing electrostatic dispersion and evaporation i_ the same

as that of Bellan and Harstad (A7) with the further addition of the charge

effects. The radial electric field and electrosratlc force a_e taken

proportional to the slmilar!ty parameter _ defined earlier. Both momentum and

energy equations take i_to account these effects which are ayeraged by

integrating over _. Figuras 15, 16 and 17, reproduced from Beference 46, show

respectively the evaporation time and the volume ratio (final volume/Initial

volume) versus the Iniclal air/Zuel mass ratio for various charse ratios, as

well as the evaporation time versus the charge rRulo for a sense cluster of

drops. The cha_e ra_io is the charge divided by the maximum charge feasible

for a given drop size (53). As seen &n Figure 15, only dense cluste_ are
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affected by drop charge. The charge acts co expand the cluster into the hot

ambient air, as seen in Figure 16, thus promoting evaporation. Foz dilute

clusters the electro.tatlc forces are too weak to produce any significant

expansion.

Some of the results discussed above, together with the results ill_.strated

in Figure 17, show chat the predicted evaporation tlme does not depend upoa

turbuience models for nondense clusters of drops, independently of whether the

drops are charged or uncharged. In contzast, the turt_ulence models can greatly

affect the predictions for uncharged dense clusters of drops (5, 47). This i&

due to the restricted available thermal energy for evaporation in the relatively

smpll interstitial region of dense clusters, along with com?arative isolation

from the hot ambient gas. For uncharged dr._ms, only turbulence can break =his

isolation, whereas for highly charged drops, charge-induced expansion dominates.

As seen in Figure 17, for drop charges greater than half the value proposed by

Weily (53), the evapoz'ation time is independenc of the turbulent model. In

Figures 15-17 _he evaporac1on time is that obtained at R1 - 0.3 which is the

value close _o _hat at which Rayleigh irstabillty occurs. The calculations are
• L

stopped at this point thus avoiding the _odellng of the 8nsuLn s drop bzeakup.

_v. iQJ_IR_Lg_/

The _odala and results presented in Sections II an_ Ill underscore the

difficulty of formulaClng approprlaCe subsrid models for use in computatieua!ly

intensive codes that could describe a variety of combuscors. The diffJ.cul_y is

assocla_ed wish the many phenomena Lnvolved, some of which are important only in

limited reglmes. However, _Ince sub_rld models mue_ be reliable _ver s wi_e
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range of physical situations, it is important to account for all these

phenomena.

The computatlonal and experimental results obtained so far show :hat dense
d

and dilute collectlons of drops be'_a _ "'_y differently. For dense clusters of

drops, the numerical results show that the inltial turbulence level of the

surrounding flow is crucial in determining the evaporation time and the dynamics

of the cluster size. This is due to several interactions factors. In _h_

absence of vortical mo_ion inside the cluster, any initial relative velocity

between drops and gas inside the cluster decays very fast to zero and thus

relative convection effects primarily enhance evaporation initially. The

in_rnal temperature of the drops increases rapidly, becomes uniform very fast

compared to the drops lifetime, and continues to increase during the entire

evaporation time. T_e energy thus transferred from Lae gas phase to a

relatively large quantity of liquid, partlculary in the absence of turbulent

mixing with large volumes of hot gas, cools the gas very rapidly _uring this
I

initial period and the cluste, size decreases as a result. The turbulent

transfer of heat and mass from =he amL ent to the cluster can significantly

influence evaporation. If t,ls transfer is vigorous, evaporation continues and

the cluster size increas.s rath6r than decreases. In the absence of tucbulent

mixln_ _turatlon may occu{ before complete evaporation.

In contrast, the evaporation of dilute clus:ers of drops is not controlled

by :urbulenc¢. In dilute clusters the energy transferred from the gas to _he

drops has a negligible impact upon the total energy content of the gas. Thus,

in the absence of _nternal vortical motion the cluster size stays nearly equal

to its initial value. Both the relaxation time of the rulazlv,m velocity between
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drops and gas inside the cluster, and the time taken for intecnal drop

temperature to become uniform are comparable to the drop lifetime.

The above results have direct bearing upon the validat'on of such subgz_d

models using comparison with experimental obsecvations. They show _hat results

obtained only from dilute portions cf a spray are inappropriate to use for

comparison because they cannot take into account the importance of the transport

phenomena which are crucial in the dense regions of the spray. This _

especially important for the subgrid models since, as pointed out here.

appropriate boundary conditions for the microscale cf the computation are

critical in order to couple to the macroscale. I_ should be noticed that the

models presented here are noc truly appropriate as subgrid models, except for

calculations where the macroscale of the system is larger than or comparable to

zhe Taylor macroscale. Modified approaches must be use,i to mathematically

describe situations where the Taylor mlcroscale and the cluster size are of the

same order of magnitude.

The above considerations of spray and cluster ignition have shown that

there is still a considerable uncertainty regarding _he description of this

phenomenon, even qualitatively, at the mlcroscale level. The difficulty arises

because in practical systems ignition is always controlled by convection. For

dense clusters of drops fgnltion occurs outside the cluster where convective

effects are important. For dilute clusters of drops ignition might occur inside

the cluster. S_nce the relative velocity between dro_s and gas has a

characteristic relaxation time comparable to the llf_Ime of the drop in this

case, convection effects are i_portant again. Thus, [_ ape.ears thus that it

would be necessary to solve dlffcrential equ_,ti_,ns _a ._.ng Into account both

convect_.on and chemical klne_ics at the mlcroscale level. Clea_ly, a simpler
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method is desirable, making this an area where new strategies defin_-l_ are

neeaed to deal with the situation. I= should be pointed out that this

discussion is relevant not only to the mathematical description of ignition, but

also to flame stability.

Cluster flames cannot be either quasi-steady or thin Just after ignition.

However, =he flame sheath approximation still seems to be a useful concept which

qualitatively describes flames around clusters, providing one accounts properly

for transport processes to and from the cluster and does not make the assumption

tha_ the burning rate equals the evaporation rate. When the flame sheath

concept is properly incorporated into a model, this model yields two important

results: i) that the flame sits Just at the periphe_y of the cluster, and 2)

that the drops disappear well before the entire fuel vapor is burnt. Both these

results are in complete agreement with experimental observations.

Finally, although numerical methods have not been discussed here in detail,

they are a very important component of these two-level (macroscale-microsca!e)

models and are expected to become evel sore important once these subgrid models

have to be incorporated into the sacroscale calculations.

Host present large scale codes are based upon the assumption that the

volume element does not ch&nge in size and-that the pressure is variable within

the volume (SA). Langrangian calculations, where the volume does change, are

also occasionally performed, but their implementation in sultldimensions

requires _uch sore efforu (54). Typically, all large scale codes solve

nonlinear, coupled mass, species, momentum and energy equations uslng a variety

of techniques. In unsteady codes, =he solution is obtained by iterating several

times at each time step until convergence of the nonlinear and of the coupled

terms is obtained.
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Since clusters of evaporating drops change their volume during the drops

llfecime, even in the absence of internal vortical motion, it seems chac the

Langragian codes are physically much more appropriate to describe the macroscale

in this two-level (macroscale microscale) description. The Lagrangian

description also offers the advantage of the simplest boundary conditions at the

surface of the cluster. These boundary conditions couple the microscale re the

macroscale and they describe transfer of mass, species, momentum and energy

across the surface of the cluster. The density, composition, temperature and

velocity field of the gas surroundings the cluster must be provided at each time

step iteration by the solution of the macroscale equatlons. The motion of the

cluster surface is given by the solution of the global conservation equations

for the cluster. In the Lagrangian description the cluster has an identity

because it cent llns the same drops thro_ghou_ the calculation and the volume of

the cluster is defined as the volume contained inside the envelope of these

drops.

in contrast, in an Eulerian calculaticn a fixed volume element cannot

represent the same drops throughout the calculation, and thus the cluster

representation is no longer meaningful. In the Eulerian representation drops

move between volume elements and thus consecration equations for the number of

drops in each volume element are additi_nally needed. Moreover, the boundaLy

conditions at the fixed surface of the vol_a element have to include now terms

representing transport of drops, gaseous mass, species, momen:um and energy

required to keep the volume constant. Similar to the microscale-macroscale

coupling at each time _tep iteratien in a Lagran_ian code, the macroscale

Eulerian code must also provide the d,unsity, _o_Gsition, temperature and
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velocity field of the gas surrounding the cluster for coupling with the
i

microscale calculations.
L

The present calculaticns (5) o_ cluster evaporation, ignition and
d

combustion are rather inexpensive. In average, less than i0 sec. of CPU time is

spent on a UNIVAC ii00 to calculate the entire history of the cluster for a

given set of initial conditions a_.d fixed values of the density, composition,

temperature and velocity field in the gas surrounding the cluster. The model

and code are flexible enough to allow the use of more realistic boundary

conditions and to be coupled to a macroscale code. The final cost of a code

based upon _he two-level description will be determined by the macroscale code

and by the efficiency with which the microscale code is coupled to she

macroscale code.
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NOMENCLATURE
Q

A area, cm2

a _adi._s of _he sphere of influence, cm

Ac cluster transverse area, cm2

CD drag coefficient for one drop

CDc drag coefficient for the cluster of drops

Cp heat capacity at constant pressure, cal/g°K

fB mass of fuel burnt between igniclon and drop dlsappearance/total fuel
mass

fFR mass of fuel lost from cluster from c-o to drop disappearance/tocal
fuel mass

Lbn effective heat of evaporation at normal boiling point, cal/g

Lp penecraclon distance, cm, Eq. (4)

evaporation rate for one drop, g/(cm 2 sec)

m Mass, g

n drop number density, cm "3

N number of drops

Nuc Nusselt number for the cluster

cluster characcerlscic length (radius, if cluster is spherical), cm

radial coordinate cenCezed at the dr)p cluster, cm
#

r radial coordlnac_ centered aC the cluster center, cm

R radius of drop, ca

_: 2Rur/u

_f radial locaclon of the flame measured on the r coordinate, cm

Rl R/R °

R2 a/R °

Shc Sherwood number for the cluster
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T ue_erature, °K

_i_e, sec

u velocity, cm/see

Vc cluster volume, cm3

Yi mass frac:ion of species i

z r/R

J

186

1990015254-190



"D

o

0.3 instant when R1 - 0.3

a at tke edge of the sphere of influence; .n_erstlti_l

d drop

dl dilute

evap evaporation

F fuel

g gas

ndl nondilute

r relative

v vapor

o initial

in the far field
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D o _m

I

u kinematic viscosity, !,/p, a_2/sec

# alr-Co fuel mass r_io
a

4s stoichiom_ric value of 4

# equivaience ratio 4/4s

p density, g/cm 3

8 nondimensional _emperature CpT/;_n

similarity parameter
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FIGURE CAPTIONS

Figure i Pictorial of drops in a cluster surrounded by flctious spheres of
influence.

Figure 2 Variation of tndl/tedl with _ for a constant volume,
adiabatically insulated cluster of drops.

Figure 3 Nondimensional radius of the sphere of influence versus _.

Figure 4 Variation of tendl/tedl and tendl with Y°Fv a for a cons=ant
volume, adiabatically insulated cluster of drops.

Figure 5 The evaporation time versus _ forj several initial relative
velocities and several drag models. R-10cm.

Figure 6 Variation of the relative velocity with residual drop size for
several _'s. _ol0cm.

Figure 7 Variation of the drop velocity with residual drop size for
several _'s. R-lOom.

Figure 8 Variation of the Reynolds number with residual drop size for
several _'s. _-10cm.

Figure 9 Nondlmensional drop temperature versus nondimensional radial

coordinate in a drop for a dense and dilute cluster of drops ac

several residual drop sizes. _-10cm.

Figure i0 Pictorial of the two different models for describing _he drop
motion inside the cluster.

Figure ii The drop evaporaclon time versus _ for ,four different models

describing transport from and to the cluster of drops.

Figure 12 The burned fuel fraction versus _o.

0 - at ignltion
0 - at drop disappearance, turbulence model 1
A - a= drop disappearance, turbulence model 2

Figure 13 Ratio of the burned fraction to the fraction of fuel that escaped
the cluster, evaluated at drop disappearance versus _o for two

models of turbulent transport to the cluster. The similarity
model was used to describe the drop motion inside the cluster.

Figure 14 The burned fuel fraction versus_ °.

0 - at £gniclon

% - at drop disappearance, turbulence model 1

A - at drop disappearance, turbulence model 2
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Fi_re 15 Time for drops to evaporate to 30% of their initial radius versus
4°.for null and various finite charge ratios.

Figure 16 Volume ratio at tO. 3 versus 4° for null and various finite charge
ratios.

Figure 17 Time for drops to evaporate to 30% of _helr initial radius versus

the charge ratio for two turbulence models.
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ABSTRACT

The behavior of evaporating clusters of drops embedded into large, coherent
vortices is described using a formulation which is valid for both dense and
dilute clusters. Drops and gas interact both dynamically and thermodynamically.
Dynamic coupling occurs through a force on the drops due to drag resulting from
a slip velocity between tee two phases. The net interaction force on the gas
with drops is due to a source thrust from evaporation plus dra9 on each drop.
The _r-_q coefficlent accounts for blowing from the drop surface. Thermodynamic
coupling is a result of drop heating and evapuration. Limitations due to drop
proximity on heating and evaporation are taken into account.

The vortical motion of the drops in the cluster results in the formation of
a core region devoid of drops at the center of the vortex, and a shell region
containing the drops and surrounding the inner core. Results are presented
showing the dependence of the evaooration time, the final to initial volume
ratio and the final to initial shell thickness ratio upon the initial air/fuel
mass ratio and as a function of the initial tangential velocities, upon the
inltial Stokes number, initial drop radius and initial outer cluster radius.
Differences in behavior between and control parameters of dense and dilute
clusters are pointed out. It is found that for dense clusters the final to
initial volume ratlo and final to initial shell thickness scale with the initial
Stokes number.
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", ' I. INTRODUCTION

LiquiQ fuel sprays are composed of many regions which are dist_hguished by the

important phenomena influencing the fate of both _as and drops. As the drops exit

*_e atomizer, the drops which are in the spray core penetrate the gas phase and

inter2 with small scale turbulent eddies before they vaporize and burn. In

contrast, the drops which are at the edge of the spray get entrained into the

larger scale vortical structures produced by the shear layer between the spray a_d

the surrounding gas, and their fate is closely related to that of these larger

eddies. This physical picture emerges from the recent experiments of Lazaro and

L_sheras(1,2) who observed a plane, two-dimensional, turbulent mixing layer formed

_etween a one-dimensional, uniform liquid spray and a stagnant air flow. These

experimental observations showed that the larger coherent vortices at the edge of

the spray play a critical role because not only do they control the entrainment of

air into the spray, but also they determine the drop number density and size

distribution throughout the mixing region. As the particles are entrained into

these eddies, they are centrifuged to the outer part of the eddy leaving behind a

core devoid of particles. Similar observations of particle dispersion in plane

mixing layers have previously been made by Kamalu et. al.(Z)

The mathematical modeling of evaporating particles dispersing in large,

coherent vortices is a challenging task due to the many coupled phenomena involved.

The drops motion is coupled to the gas motion, although to which extpnt it is still

not known(4). Crowe et al.(4) point out that the coupling between particles and gas

is a function of the Stokes number, St, which is a ratio of the aerodynamic time

and the fluid time. If St>l, the particles exit the vortex and do not interact with

it. If St<<1, the particles follow entirely the gas motion. If StzO(1), the

particles have enough time to interact with the gas and eventual relaxation of the

slip velocity between phases occurs. Clearly, there are other factors, such as

pa,'ticlenumber density and evaporation effects, which also influence the particle-

fluid interaction.
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Most exlstlng models have so far addressed the s_tuation of dilute and/or non-

evaporating p_rticle dispersion in large vortices. Such models can be found in

Chung and Troutt (5), Lazaro and Lasheras(2), Yang(6) ar,d Yang and Sichel(7).

However, recent experimental results ;_ave revealed that particles cluster in a

spray and that these clusters can be both dilute and dense(8,9). In fact, flames

have been ooserved in sprays around clusters of dro_s(I0,II) rather than indivi-

dual drops suggesting that the dense clusters of drops injected by the atomizer

persist in their dense configuration during burning.

In contrast to the existing models(5"7), ire prs_nt model of particle

d:spers_on in large coherent vortices describes evaporating drop clusters th-t can

be either dilute or delse. Thus, one can identify the different behavior of

_nitial!y aense and initially dilute clusters oF drops, and determine the

controlling factors for evaporation and dispersion in the two different cases.

II. PHYSICAL PICTURE AND MODEL

Figure I depicts the configuration which is modeled here. A cylindrical

cluster of single-component Fuel, uniformly distributed, monosize drops of radius R

_s embedded into a cylindrical, infinite, vortical structure. Uniformity is assumed

in the axial d rection, z, so that an axial, two-di_ensional section is representG-
i

Live of the configuration. Uniformity is also assumed in the azimuthal direction,

_. There are no body forces, _he pressure, p, is atmospheric and the far Field

conditions (subscript "=") are given.

Both drops and gas have radial and azimuthal velociLies, respectively Udr,

Ugr. Ude and Uge, which are fuw:ctionsof time, t, and the radius, r, from the

vortex center. The boundary of the cluster is the envelope of the drops which

becomes i_ the two dimensional representation of Fig. I an inner, Rin(t), and an

outer, R(t), boundary. The inner surface develops with time as a result of the

centrifugal force created by vortical motion. Inside the cluster each drop is

imagined surrounded by a fictitious sphere of influence whose radius, a, is the

half distance between the centers of two adjacent drops(12) Thus, the volume of
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- , the cluster, V, is that of the spheres of influence and the space between the

spheres of influence. The liquid in each drop has a temperature Td which is a

functic_1of t and the radius from the drop center, rd. The gas inside each sphere

of influence has a density _g and temperature Tg which are both functions of t and

rd, The composition of the gas inside the sphere of influence is given by the mass

fraction of the "j" various compounds, Yj(t,rd). At the edge of the sphere of

influence the gas temperature, density and mass fractions are respectively Tga(t),

_ga(t) and Yja(t) which are also the uniform values in the spaces between the

spheres of influence. Thus, whereas the velocities of drops and gas are functions

of (t,r), on a large length scale equivalent to many drop radii the cluster is

assumed spatiaTly homogenous in thermodynamic quantities. This assumption i_

consistent with the goal of d_scribing the cluster behavior globally. Consistent

with the monodispersa assumption, the drop number density, n, is independent of r.

The equations for the drops, the gas and the global cluster equations are:

A. Drop._. In Eulerian coordinates the conservation equations are:

(i) Continuity.

_n + I ___ (r n Udr) - 0 (I)at r ar

(ii) Momentum.

md [ aUdr + Udr aUdr" lU2d° ] "Fdrot Or r (2)

md [ _u-_'{_'+Udr aU-_d@+lUdr Ud' ] "FdOat • or r (3)

where Fd- -0.5 pg Ad col 'slis the force on the drops, Fdr and Fde are its compo-

nents, Ad is the drop cross-sectional area, CD is the drag coefficient, md is the

drop mass, and Us-Ud-Ug is the slip velocity where ud and Ug are drop and gas velo.

cities respectively. As a result of the previous assumptions, md is independent of

r. CD accounts for surface blowing from the drops(13,14).

(iii) Td is found by solving the liquid conduction e,,_tion coupled through
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the boundary conditions with the equations for the gas inside the sphere of influ-

ence(14,15). The gas inside the sphere of influence obeys the ideal gas Iaw(14,15).

(iv) The Langmuir-Knudsenlaw is used to describe evaporation(14).

B. Gas In Eulerian coordinates the conservation equations are:

(i) Continuity

apg ! a

_-_(r_g Ugr) -nm (4)

where m - - dmd/dt is the drop evaporation rate.

(ii) Momentum. The flow is considered inviscid, consistent with the high

keynolds number situations treated here.

aUgr OUgr I ] op
+ - - U2ge + -- - (5);g at Ugr _r r _r Fgr

aUg9 OUg0 I ]
+ + - (6)

Pg at Ugr _ _ ugr ugO Fg°

where F-g=n(_+O.SDgAdCDIU-'sl)_s is the force exerted on the gas; Fgr and Fge are its

components. Eq. (5) determines the dynamic pressure which is the very small

deviation from the constant thermodynamic pressure. Since it is assumed that the p

is constant Eq. (5) is not used.

(iii) The ideal gas law is used.

C. Global. The global conservation equations for the cluster are transient

and account for phase change and contributions due to transport across the cluster

surface(s). There are two types of boundary conditions which occur at the cluster

outer boundary (subscript "o") according to the sign of F(r)-Z_r(Udr-Ugr): (a) if

Fo.F(R)20, then Tgo-Tg® and Yjo-Yj®, and (b) if Fo-F(R)<O, then Tgo-Tga and

Yjo-Yja. At the inner boundary, (subscript "in"), Tgin-Tga, and mass and fuel

exchange across that boundary are due to fluxes pgFin and PgYFvFin respectively,

where Fin.F(Rin), subscript "Fv" denoting fuel vapor. Thus for the core the global

continuity equation is

d (_2in pg) - pg Fin (7)
dt
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- . and the fuel vapor conservation equation is

d__(_R_Zinpg YFvc) " Pg YFv Fin (8)dt

where YFvc is fuel vapor mass fraction (assumed uniform) in the core and _Fv is an

average value of YFv in a sphere of influence. The cluster gas mass, air mass, and

enthalpy are defined respectively as

fa

_mg • 2_N I pg r dr + (S - _a2N) Pga (g)
R

a

- 2_N i ;g (I YFv) r dr + (S - ,aZN) Pga (I - YFva) (10)

P

Nmair
JR

,al

2_N [ ;g Cp Tg r dr + (S - xa2N) Pga Cp Tga (11)NHg
JR

where N is the number of drops per unit vortex length, Cp is the gas heat capa-

city at constant pressure, the reference temperature is zero and S-x(R_Z-_Zin).

Under the assumption of a very small Mach number the global conservation equa-

tions are

dmg , 1

dt--" m + _ [Pga (Fo - Fin)] (12)

2_g.

dmai_____r. _g..ja[(I YFvo) Fo " (I YFva) Fin] + _ (YFva " YFv®) (13)
dt N

d [ md ] { CP (Tga" Tgs) }
Hg + _- < UZd>r " _ CpFv Tgs " exp {C[Z(RI) - Z(R2)]) - 1 +

Cp Pga (Tg° Fo . Tga Fin)+_._._._- Cp (Tg® - Tga) (14)
P

where C-m/[4_(pg D)® RO], _g is the gas viscosity, Sc is the Schmidt number, Pr is

the Prandtl number, D is the diffusivity, Tgs is the gas temperature at the drop

surface, < >r denotes a radial average, RI-R/RO (superscript "0" denotes initial

conditions), R2-a/RO and

I R2 dy
Z{y) - (eg') 0"65 (15)

Y y2 eg 0.65
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with Y-rd/R0 and e=Cp Tg/Lbn, Lbn being the latentheat of evaporationat t_e

normal boiling point. The details of the solutionfor Tg(t,rd) involvingthe

functionZ(y) are explained}Isewhere(15).In all the calculationsSc-Pr=O.8was

taken. Vortex stretchingis not considered,hence N is constant.By definition

St-2_R2<Ude>r/(g_gR).

III. SOLUTIONPROCEDURE

A slip relaxationfrequencyis definedUs-Pg Ad CD lu_I/(2md)which is indepen-

dent of r when Red <<I (Stokesregime).For largerRed, consistentwith the present

globalapproximation,vs is averagedover r.

The velocitiesare takento have the followingfunctionalform:

Aik(t)
Uik (t, r) = _ + r Bik(t) + r3q Cik(t) (16)r

where i=d,g; k-r,e; q=O for k-r; and q=1 for k-e. In Eq. (16), Aik'S are the

irrotationalpartof the solutionresultingfroma line vortex,Bik'S representthe

solidbody rotationor spin and Cik'S representa d_stortion.A solutionis sought

for which there exists a self-similarradial drop motion with the similarity

parameter_=(r2-_'2in)/(R"2-_'2in) which is fixedfor a given drop. Additionally,the

radial drop momentum equation is averagedby taking its first two moments with

respectto 6. Thus, whereasthe tangentialvelocitiesare solvedfor exactly,the

radial drop velocitydistributionis solved for approximately.To solve for the

velocities,their functionalforms are replacedinto the azimuthalequationswhich

are now transformedinto polynomialsin r whose coefficientsare then null. This

gives nonlinear,coupled,O_E's for Aik'S, Bik'S and Cik'S. It turns out that if

C0ik'S-O then Cik(t)-O which is the choice here. Agr and Bgr are determined

algebraicallyfromboundaryconditionsand consistencyconsiderations.

The given initialconditionsare: ¢0, the initialair/fuelmass ratio, R0, RTM,

'_Oin, TOgs, yOjs, TOga-Tg®, yOja-Yj., AOik'S and BOik'S. Due to lack of experimen-

tal data regardingvelocitiesof gas and drops in large vorticalstructuresthe

choicewas made to take AOir-BOir-Oso that the drops have initiallyonly tangen-
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, tial velocities.The dependentvariablesfor which soluz'o'_a, foundare:n(t),

m(t), Udr(t,r), Ugr(t,r),Ude(t,r) Ug#(t,r),R(t), Rin(t),,gs(t),TgaCt)' Pga(t)'

Yjs(t),Yja(t)and R(t). Solutionsobtainedon a UNIVAC 1100requirein average4

sec of CPU time per solution,the computationendingwhen R] - 0.04.

IV. RESULTS

All calculationsfor which results are presentedhere were performedfor n-

decane.The values of the physicalconstantsused in the calculationsare given

elsewhere(14).The specifiedfar fieldconditionsare p=latm,Tg® and Yj,.

A substantialnumber of calculationswere performed.Generalobservationsshow

that the short time behaviorof the solutionis dominatedby relaxationof the

initialconditions.This impliesthat quantativeagreementwith experimentalobser-

vationsrequirescorrectinitialconditionssince it is duringthis initialperiod

thatmost mass is evaporated.The long timebehaviorshows generallyweaklyvarying

Yj's, pg, Tg, n, and sometimesAgk and Bgk, and also a self similarvariationof

both the liquid/gas mass ratio and with RI. This implies that perhaps some

correlationscould be extractedfrom thesecalculationsfor usage in largecodes.

Accordingto the discussionof Crowe et al.(4) St0 was chosen0(I) or less to

insurethat the particlesstay confinedto the vortex.Figure2 showsthe evapora-

tion time, tevap, versus _0 for four choicesof initialvelocitiesmade to pur-

poselydelineatethe separateeffectsof vortexand spinmotion.The range of ¢O's

goes from an initiallydilute clustercorrespondingto stoichiometricconditions

for n-decane (¢=15.7)to a dense clusterof drops at an equivalenceratio ¢0=¢0/

¢s-0.01.For two choicesof'initialvelocities(BOgs-BOde=O;BOg#- 2BOdo=103sec"I)

the calculationscould not be performedfor _0=0.01 because saturationoccurred

before complete evaporation.This emphasizesthe importanceof the initialspin

motion in the dense cluster regime.BOd# turns out to be more importantin this

regime than BOg0. In the dilute cluster regimethe reverseis true. A comparison

betweenthe resultsuf Fig. 2 also shows that AOde and BOg# affectevaporationin

both dense and dilute regime.As ¢0 decreases,two regimesappear to exist.When
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¢0)i, tevap is not a strong function of ¢0, but as ¢0 decreases,the gas

temperaturedecreases,the total vapor fuel loss from the clusterdecreasesand

YFvc increaseswhile the clusterexpansionalso increases.If BOdawO and BOge _0,

the mass loss from the clusterdecreasesas ¢0 increases,whereaswhenBOde=BOde=O

increasingmass gain occurs. When ¢041, tevap increasessubstantiallyand is a

strong function of the initial velocities.For the first 1-2ms (RI_0.8),n

decreasessharplyas the drop velocityangle from the tangentincreasesfrom zero

to its maximum;thismaximumincreasesas ¢0 decreases.The largestmaximumangle,

52o, is obtained for the run where numericallyAOge=BOde.2AOde.gBOgo.103.During

this initialperiod,n relaxestc 0(I04cm"3) which means physicallythat for this

size of drops and velocities,a vortexcannotsupporta clusterof largern without

disintegrating.The ratio of the final to initial volume ratio, vf/vO, also

depicted in Fig. 2, increaseswith decreasing¢0 becauseas there is more liquid

mass in the cluster, the centrifugalforce is larger, and thus there is more

expansion. The illustrationalso shows the importanceof BOdp and BOge. For

BOde=BOgo=O,there is no volume expansion in the dilute regime and the volume

expansion in the dense regime is entirelydue to the irrotationalmotion since

Bdg(t)=Bg0(t)=O.As irrotationalmotion tends to pack or compact the particles

(because the part of the centrifugal force proportionalto Aik'S has a r"3

dependance)as R increases,the ratio of final to initialshellthickness,_-(_f-

_fin)/(_O-_Oin) (superscript"f" denotes "final", occurringat RI-0.04), stays

below unity for all ¢O's. In contrast,solid body rotationtendsto pullapart the

cluster (becausethe part of the centrifugalforce proportionalto Bik'S has a r

dependance)as _increases, and thus the largestvf/v0 andre,are obtainedwith the

largestBOde. The decrease in,_ , with increasing¢0 can be explainedby the fact

that in all cases AOgo>AOde.For t>o, irrotatlonalmotion is transferredfrom gas

to the drops, however for a leaner mixture (and more dilute cluster) the same

momentum is transferredto less mass resultingin a largerincreasein Ade versus
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_. RI. Thus the drops will be centrifugedout with more packingthan for the dense

clusters,and thusthe shellwill stay thinner.

Figure3 shows the dependenceof tevap,vf/v0 and,_.uponSt0 for initiallydense

clustersof drops (nO>t04cm'3).As expected,tevap does not correlatewith stO;

tevap increaseswith R0 and decreaseswith increasinginitialvelocities.Here R0

was varied between I0"3cm and 5x10"3cm and numericallyAOg#-BOdewere varied

between 50 and 103. When St0 is constant,the smallesttevap correspondsto the

smallestR0 and largestvelocity.One of the most importantFindingsof this study

is that vf/v0 and J_ correlatevery well with St0 and that there is a very small

dependenceupon aO when St0 is small, vf/v0 increaseswith St0 because if the

initialdrop velocityis larger,a largerexpansionis obtainedas explainedabove,

or if R0 is larger,tevap is larger and thus there is more time for expansion.

VF/V0 also increaseswith decreasing¢0 becausedenserclustershave moremomentum

resultingin a largerexpansion.When St0 is small the drops followmore closely

the gas motion. In the case of dense clusters,if BOde is small,no new gas is

entrainedinto the clusterand thus coolingand contractionoccur, evidencedby

vf/vO<I. These results are consistentwith previous findings(TM with stO=o,

showingcontractionfor dense clustersof drops.Now if R0 is small,evaporationis

fast and no new gas penetratesthe clusterbeforecompleteevaporation.Duringthis

time coolingand contractionoccur again._is a decreasingfunctionof ¢0 because

denserclustershavemore mass'andas the drops move out radiallythey loose solid

body rotationand acquireirrotationalmotion.For smaller¢0 the samemomentumis

transferredthroughvortexmetionto more mass and thusAd# increasesless, result-

ing in less packing, thus larger_. In general_<1 becausethe acquisitionof

vortexmotion by the dropsmakes the shell thinnersincethe outerclusterboundary

moves less than the inner cluster boundary.For small St0 there is strong coup-

ling between phases and the drops move first inward and _h n outward. It is

conjecturedthat at fixed 80 the minimum in,,_is obtainedwhen the irrotational

motion is most importantwith respect to solid body rotation.As St0 decreases
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Further[stO=o(10"1)],a curve crossingis observedfor the two valuesnf ¢0 us'ed

here. This is consistentwith previous findings(15)that when stO.o and ¢0

decreases,there is more cooling of the gas, and for dilute mixturesR stays

constant.For largeSt0 the interactionbetweenphasesisweak and the dropsdo not

acquiremuch vortexmotion.Thus solid body rotationdominatesresultingin shell

thickeningas seen in Fig.3.

The descriptiongivenabove is confirmedby plots versusR0 and alsoversusAOge=

BOde. At fixed StO, both vf/v0 and,_ are independentof RO. When R0 is very small

this conclusionslightlydeterioratesdue to the dominanceof coolinggenerated

contraction.When R0 is fixed and AOg_-BOdeincreases,greater final expansion,

larger Final mass gain and fuel loss to the cluster,smallertevap and largerTga

are obtained.

Figure4 showsthe dependenceof tevapand vf/v0 upon_O. When_O is smalland_O

decreasesthe surfaceto volumeratio of the clusterincreasesand thus there is

more interactionwith the ambient. As a result Tga stays larger and tevap

decreases.When _0 is large and _0 increases,the surfaceto volumeratio of the

cluster decreases, and thus interactionswith the ambient are more difficult.

However,the initialslipvelocityincreaseswith_Q for given spinbecauseit is a

Functionof r. This resultsin increasingconvectiveevaporationyieldinga slight

decreasein tevap.A plausibleexplanationfor vf/v0 increasingwith decreasing_O

(except when the initial shell thickness is constant) is as follows: Smaller

clustersreside in the innervortexpart dominatedby irrotationalmotion,whereas

larger clustershave more mass in the outer part of the vortexdominatedby spin.

Since the centrifugalforce is a strongerfunctionof the irrotationalmotionthan

of spin as _ decreases,for smallerclustersthere is a largercentrifugalforce

if there is strong couplingbetweenAge and Ado which is what happensfor dense

clusters.This results in more expansionand thus largervf/vO. When the initial

shell thicknessis constant,as R_b increasesspin becomesrelativelymore important

than in the other cases because here there is not much liquidmass in the core.
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., _, Because larger clusters have generallymore spin and thus a largercentrifugal

force,the expansionis largerand vf/v0 increases.

In Fig. 5,,_.isplottedversus_0. As explainedabove,when _ increasesspin

dominates,resultingin a largerdrop dispersionand thusJ_.increases.In contrast,

when_O decreases,irrotationalmotiondominates,resultingin more packingof the

drops and thus._decreases.

V. SUI_HARYAND CONCLUSIONS

A formulationhas been presentedwhich describesthe evaporationof clustersof

drops in large, coherent,vortices.The model takes into accountthe dynamicand

thermodynamicinteractionsbetweendrops and gas and is valid for both dense and

diluteclustersof drops.

The results show the importanceof both BOdo and BOge for achievingcomplete

evaporationin the dense cluster regime. By increasingBOd8 and BOgo, complete

evaporationis achievedin cases where saturationwould be obtainedotherwise.It

was also found that vf/v0 and,_ are both decreasingfunctionsof ¢0 due to the

largermass (andthus largercentrifugalforce)as the mixtureis richer,and also

due to the complexinterplaybetweenirrotationalmotionand solidbody rotationin

affectingthe fate of the drops.

Resultsobtainedfor dense clustersof drops show that tevap does not correlate

with StO. In contrast,both vf/v0 and_correlate very well with StO. This result

Js very significantfor experimentalistsand designingengineersand also gives a

way to qualitativelycheck this theorywithoutneedinga precisemeasurementof n

providingnO>lO4cm"3. WEen St0 is small the behavioris dominatedby'evaporative

coolingand clustercontractionwhereaswhen St0 is large expansionis due either

to larger initialvelocitiesor larger evaporationtime. At constantStO, tevap

increaseswith RC, but both vf/v0 and_ are independentof RO.

The results show also that tevap is a nonmonotomic,convex functionof _'0,

althoughthe variationwhen_ '0is large is slight.Sincewhen7 0 is smalltevap is

a strongly increasingfunctionof_ 0 thls means that by slightlydecreasing_0 one
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could achieve important reductions in evap. vf/vO is a decreasing function of_ C, "

except when the initial shell thickness is constant, in which case it is an in-

creasing function of _O.j_.is an increasing function of R_0 characterized by drop

packing and shell-thinning for small RO, and drop dispersion and shell-thickening

for large values of_ "0.

The confirmation of all the above results awaits comparison with experimental

observations which so far are lacking, except for the dilute cluster regime and/or

non evaporating case. In the dilute regime the present model predicts qualitatively

the global observations of the experiments(l,2,3), but detailed comparisons cannot

be made due to the fact that the more realistic case o# the evaporating drops was

treated here. In the present calculations an efficient computational procedure was

developed using the drop radius as the advancing, time-like variable. This

procedure precludes comparisons with the non-evaporatingdrops experiments.

Acknowledaement

This work was supported by the Air Force Office of Scientific Research, with Dr.

Julian Tishkoff acting as technical monitor through an interagency agreement with

the National Aeronautics and Space Administration.

• L

224

1990015254-228



, REFERENCES

I. Lazaro, B. J., and Lasheras,J. C.: 2_nd Symp. (.Int.)on Combustion,pp
1991-1998,(1988)

2. Lazaro,B. J., and Lasheras,J. C.: Phys. Fluids A, i, 6, pp 1035-1044,
(1989).

3. Kamalu,N., Wen, F., Troutt,T. R., and Crowe,C. T.: ASME Cavitationand
MultiphaseFlow Forum,FED, 64, p 150, (1988).

4. Crowe,C. T., Chung,J. N., and Troutt,T. R.: Prog. EnerqyComb. Sci., 14,
pp 171-194,(1988).

5. Chung,J. N., and Troutt,T. R.: J. FluidMech., 186,pp 199-222,(1988).

6. Yang,M. H.: Ph.D. Thesis,The Universityof Michigan,(1989)

7. Yang, M., and Sichel,M.: AIA_A89-0159, 27th AerospaceSciencesMeeting,
Reno,Nevada,(1989).

8. Chigier, N. A., Mao, C. P. and Oechsle,V.: 7-6A, CSS/WSS/TheCombustion
InstituteSpringMe_ting,(1985);also privatecommunication,(1989).

9. Rudoff, R. C., Brena de la Rosa, A., Sankar,S. V., and Bachalo,W. D.:
AIAA-89-O052,27thAerospaceSciencesMeeting,Reno, Nevada,(1989).

I0. Allen,M. G., and Hanson,R. K.: 21st Svmp. (Int.)Qn Cgmbustion,pp 1755-
1762, (1986).

11. Nakabe,K., Mizutani,Y., Hiro, T. and Tanimura,S.: CombGlt.Flame,7-4,pp
39-57, (1988).

12. Bellan,J. and Cuffel,R.: Comb. Flame,51, I, pp 55-67,(1983).

13. Cliffe,K. A., and Lever, D. A.: Int. J. Numer.Meth. Fluids,_, pp 709-
725, (1985).

14. Bellan,J. and Harstad,K.: Int. _. Heat Mass Transfer,30, I, pp 125-136,
(1987).

15. Bellan,J. and Harstad,K.: Int. J. Heat Mass Transfer,31, 8, pp 1655-
1668, (1988).

8

225

1990015254-229



r

226

1990015254-230



f

SYMBOL cm=/seccm2/_ec sec-, sec-1
2.0_ _ 103 0 0 1C3

E O 103 5 x !021 0 i 0

u_ 1.5 _ [] 103 5x102 103 !5x!021 2.0"-'=_
_ s_, io2 Io3 -IJ.l " I
Z

_- 1.0

_ 0.5m I

0.C 0.0 =
.E-01 I.E+00 1.E+01 1.E+02

8.0- INITIALAIR/FUEL MASS RATIO,e0 _

o 6.0_"

> 4.0

2.0

0.0 , , I ...... l
I1.E-01 ' 1.E+00 !.E+01 1.E+02

' 60t _X, INITIALAIR/F:EL MASS RATIO'$0[nO, 105¢m 3 i
_'..-| "%, [ FI20- 6 RICH LEAN J

'°F- =:" ]nO= 8.9 X 102crrr"3

3.0
1.E-01 1.E+00 1.E+01 1.E+02

INITIALAIR/FUEL MASS RATIO,$0

1990015254-231



f r

INITIALTANGENTIAL
SYMBOL ¢0 R0 VELOCITIES

1.57 V.'ARIES VARY
iii

O 0_785 VARIES CONSTANT
t-] 0.785;CONSTANT VARY
• 1.57 VARIES CONSTANT

• 1.57 CO.'_ISTANT V,_'RY ----,-

_

_ 1.or_.._ _ -

__o._t_-__ o_,, .
0.0_

o.o 0.2 0.4 0.6 0.8 1.o _.21.4
1.2 , , (STOKES)O

1.0 _

_ ..I'1'2
_o., __ t,.o._

=,.,-" .11"- t .I = 6"

, o., .°
_ o.o o.s F _.o _.5 /)_ -i .o_

._sToK_s)o'4", 4_.o
1.0

_0.0 '
0.0 0.5 1.0 1.5

(STOKE$)0

228

1990015254-232



q t

6.0 , , , ,
•r- C

5.0 _ -v

-% 4.0
>

3.0

2.0 I I I I

5.5 , _

5.0 - / SYMBOL 00 I_Oin

/
L_ 1.57 O.25crn

0 I.S7 .. _/4

x _, • 0.314[ lO-ocm

,', 4.0 f '--"-'-'-_3.5 -

3.0 t =,, t I
0.0 1.0 2.0 3.0 4.0 5.0

_cm
.*

229

1990015254-233



D IP

230

1990015254-234



FIGUR_CAPTIONS

FigureI Physical situationstudied. Rin and R are both locatedin the Free

vortex part of the line vortexwhich is locatedat the center of the

cluster.

Figure2 Variationof the evaporationtime, volumeratio, final shellthickness

and shell thicknessratio versus the initialair/fuelmass ratio. TOga

= IO00K, TOgs = 350K, YOFva = O, R0 = 2xl0"3cm,"_0 = 1.0cm,_0in =

0.25cm,P2 " 0.734 g/cm3 Cp = 0.241 cal/gK,CpFv = 0.4 cal/gK,Lbn =

73.92 cal/g.

Figure3 Variationof the evaporationtime, volumeratio, final shell thickness

and shell ratio with the initial Stokes number for initiallydense

clusters of drops. TOga = IO00K,TOga - 350K, YOFva = 0,_'0= 1.0 cm,

'_0in= 0.25cm,AOdo = BOgo - O, p_ = 0.734g/cm3, Cp = 0.241 cal/gK.

CpFv = 0.4 cal/gK,Lbn - 73.92 cal/g.

Figure4 Evaporationtime and volume ratio versus the initialouter radius of

the cluster. TOga = 100OK, TOgs = 350K, YOFva - O, A0d9 = B0ge = O,

A0ge (cm2/sec)= B0do (sec"I) = 103, p_ - 0.734g/cm3, Cp = 0.241

cal/gK,CpFv = 0.4 cal/gK,Lbn = 73.92 cal/g,R° = 2x10"3cm.

Figure5 Variationof the final shell thicknessand shell thicknessratio with

the initial outer radius of the cluster.TOga = 1000K,TOgs = 350K,

YOFva = 0, A0de = B0go = O, AOge (cm2/sec)= BOd0 (sec"I) - 103, p_ =

0.734g/cm3, Cp = 0.2_I cal/gK,CpFv = 0.4 cal/gK,Lbn = 73.92 cal/g, R°
. 2xIO-3cm.
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